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Introduction

At last, some remarks are made about the transfer of momentum from the

sun to the planets, which is fundamental to the theory. The importance

of magnetohydrodynamic waves in this respect are [sic] pointed out.

First published mention of the termmagnetohydrodynamic, from “On
the cosmogony of the solar system III” by Hannes Alfvén, 1942,
Stockholm’s Observatoriums Annaler, v. 14, 9.1–9.29.

The ancient Greeks knew the universe to be made up of the four elements:

earth; water; wind; and fire. Today, we know these as the four states of matter:

solid; liquid; gas; and plasma, three of which fall into the realm of fluid dynamics.

Indeed, more than 99.9% of “ordinary matter” in the universe is in the fluid state

and, in particular, the plasma (magnetohydrodynamical) state.1

Yet, as a pure science, fluid dynamics has often been omitted from many uni-

versity undergraduate physics curricula. In fact, if you want to find regularly offered

courses in fluid dynamics in a university calendar, you’re more likely to find them

among the engineering or applied mathematics offerings than physics.

One could come up with a number of reasons for this:

• areas of physics such as classical mechanics, electrodynamics, and quantum

mechanics are deemed more “fundamental” and courses such as fluid dynamics

get relegated as “optional”, if offered at all;

• analytical progress generally requires mathematics not typically understood

by most undergraduate students of physics until their fourth year; and

• historically, the really interesting problems required the use of major labora-

tory facilities (such as those available in a large engineering department) or

theorems of advanced applied mathematics.

An alternative to expensive laboratories or a degree in Applied Mathematics is

computing. While supercomputers capable of solving interesting problems in fluid

dynamics have been available since the mid 1980s, it is only since the turn of the 21st

century that cheap supercomputing has become widely available so that “ordinary”

physicists and astrophysicists can once again do interesting problems in the subject.

Indeed, many of the more “interesting” problems in astrophysics such as those

1www.plasma-universe.com/99-999-plasma/.
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2 Introduction

in star formation, planetary discs, stellar evolution, the interstellar medium, forma-

tion of galaxies, galactic and extragalactic outflows and accretion, the early universe,

cosmology, even the Big Bang itself have awaited this “promised land” of cheap

supercomputing. Now that it has “arrived”, more and more of the literature in

astrophysics is being devoted to applications of fluid dynamics and, in particular,

magnetohydrodynamics. More than for any other practitioner of physics, astrophysi-

cists are finding the role of fluid dynamics is becoming increasingly important with

time, not less. For this reason alone, I would argue, university physics curricula

should be offering more courses in fluid dynamics, lest the discipline be taken over

completely by the engineers and applied mathematicians!

Before we start, let us agree on some basic terms and their uses.

1. A fluid is a state of matter that can flow. A liquid is an incompressible fluid,

while gas and plasma (ionised gas) are compressible fluids. A more technical

definition of a fluid involves the notion of granularity, where themean free path

(or collision length defined as the distance a particle in the fluid can travel,

on average, before colliding with another particle), δl, is much less than any

measurable scale length of interest (L). When δl � L, a fluid can be treated

as a continuum rather than as an ensemble of particles which simplifies the

governing equations enormously.

2. Fluid Dynamics, a term which is interchangeable with hydrodynamics (HD),

is the physics of fluid flow (compressible or incompressible), and involves the

concepts of mass and energy conservation, Newton’s second law, and an equa-

tion of state.

3. Fluid Mechanics has come to refer to fluid dynamics from an engineering van-

tage point, with more emphasis on experimentation than on theory. Typically

(but not always), a text entitled Fluid Mechanics will be an engineering text,

while a text entitled Fluid Dynamics will be a physics text. A notable ex-

ception is Landau and Lifshitz’ classic text Fluid Mechanics, which, in many

ways, is the definitive treatment of the subject from a theoretical physicist’s

perspective.

4. Gas Dynamics is compressible fluid dynamics in which all the fluid particles

are neutral.

5. Magnetohydrodynamics (MHD) is compressible or incompressible fluid in which

an appreciable fraction of the particles are charged (ionised) and where charge

neutrality is observed at all length scales of interest. Thus, within any volume

element however small, there must be as many negative charges as positive.

In an MHD fluid, circulation of charged particles at the sub-fluid length scale

implies a current and thus a magnetic field which, in turn, interacts with

ionised particles on the post-fluid length scale. Note that an MHD fluid need

not be 100% ionised for the equations of MHD to apply (e.g., Chap. 10 on
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non-ideal MHD). Neutrals in a partially (even a few percent) ionised fluid can

couple to the magnetic field via collisions with charged particles. By contrast,

a completely neutral gas can neither generate nor interact with a magnetic

field.

An MHD fluid can be created from an HD fluid by increasing the ionisation

fraction. For a gas, this can be done by increasing its temperature and thus

compressible MHD fluids are plasmas. For a liquid such as water, the ioni-

sation fraction can be increased by dissolving salts. While the earth’s oceans

permeated by the earth’s magnetic field technically constitutes an MHD fluid,

the weakness of the earth’s magnetic field (∼4 × 10−5 T, β ∼ 109 defined in

5.2)2 and the extremely low fraction of particles that are ionised renders the

MHD effects just about immeasurable.

6. Plasma Physics is the study of the collective behaviour of an ensemble of

charged particles at length scales smaller than the fluid length scale thereby

rendering the MHD equations inapplicable. Plasma physics is generally de-

scribed by the Vlasov–Boltzmann equation which can account for non-fluid-like

behaviour such as charge separation and plasma oscillations. An MHD fluid

can be described as a plasma in which charge neutrality is observed at all

length scales of interest, and thus MHD is an important special case of plasma

physics. An excellent first text on plasma physics, which is beyond the scope

of this text, is Volume 1 of Francis Chen’s now-classic text Plasma Physics

and Controlled Fusion (1984).

The equations of MHD reduce to the equations of HD when the magnetic

induction ( �B) is set to zero. As we shall see, HD becomes MHD by adding the

Lorentz force to the hydrodynamic version of Newton’s second law, and by intro-

ducing Faraday’s law of induction that governs how the magnetic induction evolves.

These modifications, which will seem rather elementary when first introduced, belie

the incredible complexity magnetism provides an ionised fluid. For example, while

a hydrodynamical fluid can support compressive waves only (and thus, much of HD

can be understood in one dimension), the tension along lines of magnetic induc-

tion allow a magnetohydrodynamical fluid to support transverse waves as well, thus

requiring all three dimensions to describe.

To understand MHD is to understand wave mechanics, and much of this text is

devoted to building the students’ mathematical skills and physical intuition in this

area. By the end of Part I, the student will be able to solve the most complex MHD

problem one can do exactly (albeit, semi-analytically), namely the MHD Riemann

problem. And while the development of a general, multidimensional computer code

2Strictly speaking, it is the magnetic induction, �B, that has units tesla while the magnetic
field, �H = �B/μ (App. B), has units ampere/metre. Thus, the earth’s magnetic field is about 30
A/m. In this book, I attempt to be consistent with this distinction by using the term magnetic
field when referring to magnetism generically, and magnetic induction when reference is to �B
specifically although, for the most part and especially in astrophysics, this difference is largely
academic since all that separates them is the constant μ0.
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4 Introduction

to solve more complex problems in MHD is beyond the scope of this book, the 1-D

Riemann problem and the ideas upon which it is based are at the core of virtually

every general computer program written and with which a whole host of interesting

(astro)physical problems become accessible.
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1-D MHD IN TEN WEEKS

www.cambridge.org/9781009381475
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-38147-5 — A First Course in Magnetohydrodynamics
David Alan Clarke
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1
The Fundamentals of

Hydrodynamics

Everything flows and nothing abides; everything gives way and nothing

stays fixed.

Heraclitus (c. 535–c. 475 BCE)

1.1 Definition of a fluid

The physics of hydrodynamics (HD), namely conservation of mass, conservation

of energy, and Newton’s second law, are all concepts familiar to first-year

undergraduate students, though the mathematics to solve the relevant equations is

not. Consider an ensemble of particles within some volume V , and let these particles

interact with each other via elastic collisions. We can let V remain fixed (in which

case we allow the particles to collide elastically with the walls of the container too),

or we can let V increase or decrease as the particles move apart or come together;

it does not matter. If the mass, total energy, and momentum of the ensemble of

particles are M , ET, and �S respectively, then we have:

dM

dt
= 0, conservation of mass; (1.1)

dET

dt
=
∑

Papp, conservation of total energy; (1.2)

d�S

dt
=
∑

�Fext, Newton’s second law. (1.3)

Here,
∑Papp is the rate at which work is done (power) by all forces applied to

the ensemble of particles, and
∑

�Fext are all forces external to and acting on the

ensemble of particles. Note that the applied forces – normally just collisions from

neighbouring ensembles of particles – are typically a subset of the external forces,

which include collisions from neighbouring particles plus forces arising from gravity,

magnetism, radiation, etc. This is because in addition to the thermal and kinetic en-

ergies, the total energy, ET, includes gravitational, magnetic, radiative, and possibly

other energies as well.

It is how we model the collisional forces from neighbouring ensembles of parti-

cles that defines both what constitutes a fluid and how Eq. (1.1)–(1.3) are further

developed. Consider a small cube with volume ΔV = (Δl)3 as shown in Fig. 1.1a.
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8 The Fundamentals of Hydrodynamics

Figure 1.1. a) A single particle bounces elastically from the walls of a cube of
edge length, Δl, imparting impulses Jx, Jy , etc. b) An x–y cut through the cube
in panel a showing one particle whose motion is entirely in the x-direction.

Let the walls of the cube be perfectly reflecting and let there be just one particle

inside the cube moving at some speed v in an arbitrary direction.

When the particle collides with the wall, both the particle and cube suffer a

change in momentum in a direction normal to the surface of the cube. Moments

later, the particle collides with a different wall, and the particle and cube suffer

changes in momentum in a direction normal to that wall. A change in momentum

is an impulse, J , which when multiplied by the time over which the collision occurs,

Δt, constitutes the average force. Thus formally, the “pressure”, p, the collision

exerts on the wall of the box is this average force divided by the area of the wall:

p ∼ JΔt

(Δl)2
.

In this scenario, the “pressure” is highly variable in time, and by no means could

the “pressure” be construed as isotropic. At a given time, the “pressure” one wall

feels will have nothing to do with the “pressures” felt by the other walls.

However, by arbitrarily increasing the number of particles, N , inside our small

volume, ΔV , the number of collisions with a given wall, n, occurring in a time Δt

will be the same at each wall to within some arbitrarily small variance, Δn. Put

another way, averaged over Δt, particle collisions exert the same “pressure” on each

wall to within a variance made as small as we please by making N as large as we

please. Thus, we have rendered the particle “pressure” inside the cube isotropic

because each wall now feels the same force.

There is a contrived exception to this picture. If all the particles were to be

placed initially on the mid-plane of the cube and all were launched with the same

speed towards one wall of the cube, then it is only with this and the opposite wall

that particles would ever collide, and they would do so in a highly ordered, periodic

fashion. The remaining four walls would, in principle, never feel any collisions, and

thus the “pressure” in the cube would not be isotropic even with N chosen arbitrar-

ily large. Such a well-ordered and well-directed ensemble of particles is said to be

streaming and, as N is made larger, it becomes increasingly difficult in practice to

maintain streaming motion. Small perturbations will eventually cause one particle

to collide with another which in turn collide with others, and the ensuing chain
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9 A quick review of kinetic theory

reaction quickly reduces the streaming motion to chaos. Isotropic “pressure” (the

same “pressure” measured on each of the six walls) is once again the result.

We can now state the key criterion for an ensemble of particles to be treated as

a fluid. If there is a sufficient number of particles inside our box (volume element) of

dimension Δl so that the motion of particles within the volume element can always

be considered isotropic, then the effect of the collisions of particles against the walls

of the volume element (which may be rigid walls, or “soft” walls of neighbouring

ensembles of particles) is to exert an isotropic “pressure” against all walls. Since

isotropy is maintained by particle–particle collisions within the volume element, we

may “mathematise” this criterion as,

δl � Δl < L, (1.4)

where δl is the mean free path (collision length) of the particles, Δl is the length

of one side of our cubic volume element containing an arbitrarily large number of

particles, and L is the smallest length scale of interest in our physical problem. If

Ineq. (1.4) holds, we say the ensemble of particles behaves as a fluid or a continuum.

This assumption is an important one; it allows us to treat the applied forces resulting

from collisions – which otherwise could be extremely difficult to deal with – in a

very simple way, namely as an isotropic “pressure”.

1.2 A quick review of kinetic theory

To now, I have been enclosing the word pressure in quotation marks. This is be-

cause I haven’t yet made the logical connection between particle collisions (and

more specifically, the momentum transferred by particle collisions) and what we

commonly think of as pressure, such as the barometric pressure of the air. So, be-

fore we examine how Eq. (1.1)–(1.3) become the equations of hydrodynamics (HD)

under the assumption that the ensemble of particles behaves as a fluid (when Ineq.

1.4 is valid), let us review how the “pressure” and the “temperature” of a fluid re-

late to properties of the ensemble of particles. These ideas form the basis of kinetic

theory, often exposed to students for the first time in a first-year physics course.1

Consider a cube whose edges of length Δl are aligned with the x-, y-, and z-axes

of a Cartesian coordinate system, as depicted in Fig. 1.1. Returning to our example

in the previous section, suppose a single point particle of mass m moves inside the

cube with velocity vx x̂ and collides with the wall whose normal is +x̂. If collisions

are all elastic, then the particle reflects from the wall with a velocity −vx x̂ and

thus suffers a change in momentum of ΔSx = −2mvx. Conservation of momentum

then demands that an impulse of +2mvx be imparted against the wall. At a time

Δt = 2Δl/vx later, the same particle again collides with the wall, imparting another

impulse of +2mvx against it. Thus, the rate at which momentum is delivered to the

1For example, Halliday, Resnick, & Walker (2003).
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10 The Fundamentals of Hydrodynamics

wall by a single particle is given by,

ΔSx

Δt
=

2mvx
2Δl/vx

=
mv2x
Δl

= 〈F 〉,

where 〈F 〉 is the average force felt by the wall. Thus, the average pressure exerted

by this one particle, defined as force per unit area, is given by,

〈p〉 =
〈F 〉
(Δl)2

=
mv2x
V

,

where V = (Δl)3 is the volume of the cube. For N particles, we simply add over all

particles:

p ≡
N∑

i=1

〈pi〉 =

N∑

i=1

mv2x,i
V

=
m

V

N∑

i=1

v2x,i =
mN
V

〈v2x〉, (1.5)

where each point particle is assumed to have the same mass, m, and where 〈v2x〉 =∑
v2x,i/N is the arithmetic mean of the squares of the particle velocities.

For any given particle, v2 = v2x + v2y + v2z and, for large N , one would expect

〈v2x〉 = 〈v2y〉 = 〈v2z〉 since one Cartesian direction shouldn’t be favoured over another.

Thus,
〈v2〉 = 〈v2x〉+ 〈v2y〉+ 〈v2z〉 = 3〈v2x〉, (1.6)

and Eq. (1.5) becomes,

p =
Nmv2rms

3V
, (1.7)

where,
vrms ≡

√
〈v2〉,

is the root-mean-square (rms) speed of the particles in the volume V . Comparing

Eq. (1.7) with the ideal gas law :

p =
NkBT

V
, (1.8)

(where kB = 1.3807× 10−23 JK−1 is the Boltzmann constant) yields:

T =
mv2rms

3kB
⇒ 3

2
kBT =

1

2
mv2rms = 〈K〉, (1.9)

where 〈K〉 is the average kinetic energy per point particle. Thus, while the pressure,

p, is a measure of the rate at which momentum is transferred from the particles of

the fluid (gas) to, for example, the diaphragm of the measuring device (barometer),

the temperature (or more precisely 3kBT/2) is a measure of the average kinetic

energy of the particles.

The randomly directed kinetic energy of a system of N particles is called its

internal energy, E, and, for the point particles under discussion, is given by,

E = N〈K〉 =
3

2
NkBT.

The factor 3/2 is significant and warrants comment. A point particle, as may

be found exclusively in a monatomic gas, has three degrees of freedom of mo-

tion, namely translation in each of the three Cartesian directions (Fig. 1.2, left).

www.cambridge.org/9781009381475
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-38147-5 — A First Course in Magnetohydrodynamics
David Alan Clarke
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

11 A quick review of kinetic theory

Figure 1.2. A point particle (left) has three degrees of freedom for movement,
while a “dumb-bell” (right) has five.

From Eq. (1.6), we have 〈v2i 〉 = 〈v2〉/3 for i = x, y, z, and thus to each (transla-

tional) degree of freedom we can associate an internal energy Ei = N kBT/2, where

E = Ex + Ey + Ez = 3Ei.

Now, a diatomic molecule (essentially two point masses connected by a massless

rod) has the same three translational degrees of freedom as a monatomic particle

plus two rotational degrees of freedom, namely rotation about each of the two

principle axes orthogonal to its own axis (the x-axis in Fig. 1.2, right), for a total

of five degrees of freedom.2 Note that spinning about the x-axis itself does not

constitute a degree of freedom as the moment of inertia about this axis is essentially

zero. Because of the principle of equipartition,3 each degree of freedom stores the

same amount of kinetic energy, and the internal energy of a diatomic gas must be,

E =
5

2
NkBT.

Thus, in general, we write,

E =
1

γ − 1
NkBT, (1.10)

where γ = 5/3 for a monatomic gas, γ = 7/5 for a diatomic gas, and 4/3 ≤ γ < 7/5

for molecules more complex than diatomic.4 One can show that γ = CP /CV , the

ratio of specific heats of the gas, and that for an adiabatic gas (where heat is neither

lost nor gained from the system), p ∝ ργ , where ρ is the mass density of the gas.

Dividing Eq. (1.10) by the volume of the sample and using Eq. (1.8) gives an

expression for the internal energy density, e:

e =
E

V
=

1

γ − 1

NkBT

V
=

p

γ − 1
.

Thus, an alternate form of the ideal gas law, and the form most frequently used in

2In principle, there are also two vibrational degrees of freedom which, at “ordinary tempera-
tures”, statistical mechanics tells us are insignificant.

3Left to their own devices, systems will distribute the available energy equally among all
possible ways energy can be stored. Thus, for a large number of diatomic molecules randomly
colliding with each other and the walls of their container, one would not expect m〈v2x〉 to differ

significantly from m〈v2y〉 or m〈v2z 〉 any more than it should differ from Iy〈ω2
y〉 or Iz〈ω2

z 〉, where Iy
and Iz are the moments of inertia about the y- and z-axes respectively.

4Polyatomic molecules are significantly more complex than diatomic molecules, and the full
power of statistical mechanics along with a tensor treatment of its moment of inertia are required
to explain the value of γ for any individual molecule.
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