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Preface

What is this book about? This book deals with the ubiquitous problem of model

uncertainty, which is one of the most relevant topics in quantitative risk management.

It identifies a series of relevant instances of model uncertainty, such as departures from

assumed independence, incomplete dependence information, factor models that are

only partially specified, or portfolio information that is only available on an aggregate

level (e.g., mean and variance of the portfolio loss). It provides the necessary tools to

quantify this model uncertainty and in particular to determine the best upper and lower

risk bounds for various risk aggregation functionals of interest.

Why did we write this book? While there are good textbooks available dealing with

basic methods, concepts, and models in quantitative risk management, this book is the

first systematic treatment of the topic of model risk. Not only does it elaborate on the

necessary theoretical results for the determination of risk bounds, but it also provides

numerical procedures for the effective evaluation of these bounds.

For whom is this book? The book is a relevant reference text on the topic of

model risk assessment for actuaries, risk managers, and regulators. It also serves as a

textbook for graduate courses on the topic of risk bounds and model uncertainty within

the general subject area of risk management in quantitative finance and insurance. The

methodology draws on diverse quantitative disciplines ranging from mathematical

finance, probability, and statistics to actuarial mathematics.

Acknowledgments: The book is a culmination of a long series of research papers

on the topic of model risk. We are indebted to numerous colleagues and former

Ph.D. students who either coauthored some of these research papers or who have

helped us in our understanding of model risk and the mathematics underlying it. In

particular, we would like to mention the substantial contributions of Paul Embrechts

and Giovanni Puccetti, who in fact initiated this type of research, as well as the early

basic contributions of Etienne de Vylder. Our cooperation includes joint work with

Jonathan Ansari, Valeria Bignozzi, Kris Boudt, Andrew Chernih, Ka Chun Cheung,

Dries Cornilly, Michel Denuit, Corrado De Vecchi, Paul Embrechts, Luc Henrard,

Edgars Jakobsons, Rodrigue Kazzi, Thibaut Lux, Dennis Manko, Silvana Pesenti,

Giovanni Puccetti, Daniel Small, Jan Tuitman, Ruodu Wang, Julian Witting, and Jing

Yao. We are also grateful to the many anonymous referees whose comments helped

us to improve the quality of these research papers and thus of the book. We thank
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x Preface

David Tranah and the team at Cambridge University Press for all their help in the

production of this book. Special thanks go to Monika Hattenbach for her dedicated

work in preparing the manuscript. Finally, we are indebted to our partners, Gabi, Sonja,

and Christophe, for their patience and for forgiving our absentmindedness.

www.cambridge.org/9781009367165
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-36716-5 — Model Risk Management
Ludger Rüschendorf , Steven Vanduffel , Carole Bernard
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Introduction

This book deals with the problem of model uncertainty, which is a most relevant topic

in quantitative risk management. It identifies a series of relevant instances of model

uncertainty, such as departures from assumed independence, incomplete dependence

information, factor models that are only partially specified, or portfolio information

that is only available on an aggregate level (e.g., mean and variance of the portfolio

loss). It provides necessary tools to quantify this model uncertainty and in particular to

determine the best upper and lower risk bounds for various risk aggregation functionals

of interest.

Making sound decisions under uncertainty generally requires quantitative analysis

and the use of models. However, a “perfect” model does not exist since some divergence

between the model and the reality it attempts to describe cannot be avoided. In a broad

sense, model risk is about the extent to which the quality of model-based decisions

is sensitive to underlying model deviations and data issues. Quantifying model risk is

a key problem in nearly all applied disciplines, including epidemiology, engineering,

finance, and insurance. For instance, sums of variables (portfolios) are at the core of

the insurance business, as the insurer counts on diversification effects to control the

risk of the entire portfolio. For an insurance portfolio, the assumption of independence

between the policies is sometimes realistic, in which case the insurer can, for instance,

resort to the central limit theorem or to Monte Carlo methods to quantify the maximum

loss in a given period of time at a certain probability level (i.e., the VaR). In the majority

of cases, however, the individual risks are influenced by one or more common factors,

such as geography or economic environment, and it is difficult to specify the joint

distribution. Another example concerns the establishment of the capital buffers banks

need to put aside to absorb unforeseen losses for a portfolio of risky loans. Doing

so requires accurate estimates of the likelihood that various obligors default together,

which is very difficult due to a scarcity of data. In this book we focus on model risk in

a financial and insurance context.

Model risk may have a real impact on society, such as damage to an institution’s

reputation or even systemic risk implications. For example, Long-Term Capital Man-

agement (LTCM) was a hedge fund that used quantitative models based on normality

assumptions but neglected the importance of stress-testing. In 1998 it lost 4.5 billion

and required the financial intervention by the Federal Reserve (Lowenstein, 2008). In

fact, one of the drivers of the worldwide 2008–2009 financial crisis was the almost

blind reliance on certain model assumptions (Salmon, 2009).
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xii Introduction

While the problem of model uncertainty in statistics has a long history – being

developed there under the notion of robust statistics – at the time of writing this book,

measuring and managing model risk in a financial context is a relatively new activity.

Model risk has, however, already taken a prominent position in the agenda of regulators

and supervisors. For instance, in February 2017, the European Central Bank published

a guide to the targeted review of internal models (TRIM) in which it is declared

that every institution “should have a model risk management framework in place that

allows it to identify, understand, and manage its model risk” (ECB, 2017). However, in

a status update on TRIM published in June 2018, more than a quarter of the companies

supervised had no model risk management framework in place. In their discussion

paper on the review of specific items in the Solvency II Regulation, the Actuarial

Association of Europe is insisting on focusing more on model risk assessment (AAE,

2017). In the UK, the prudential regulation authority of the Bank of England published

some notes on stress test model management principles in which they insist on the

necessity of understanding and accounting for the assessment of model uncertainties

(PRA, 2018).

In addition to the inherent necessity for insurers and banks to continuously monitor

and challenge the models they use in their operations (pricing, product design, risk

management), the need for model risk management is further strengthened by the fact

that the insurance and banking market is innovating at a very fast pace. New products

emerge with unique characteristics, such as driverless car liability insurance, artificial

intelligence/robotics liability insurance, and nanotechnology liability insurance. The

advent of these new products calls for new pricing and reserving models. In response to

this, and in particular driven by the lessons learnt from the 2008–2009 financial crisis,

regulators and rating agencies are thus increasing pressure on the financial industry to

measure the risk they run and to demonstrate that enough capital is available for absorb-

ing adverse shocks. In order to mitigate this model risk efficiently without restraining

too much the arrival of new products and models, the model risk management function

(MRM) is emerging in the financial industry. The well-established Professional Risk

Managers’ International Association (PRMIA) follows this evolution in that it is giving

more and more attention to the MRM function in its seminars and other activities.

In the remainder of this introductory chapter, we explain some basic notions of

risk assessment and risk models. Furthermore, we describe some basic tools of how

to measure aggregate risk, and we conclude by providing an overview of the various

subjects dealt with in this book.

A. Risk Assessment and Risk Models

The risk assessment of a multidimensional portfolio (X1, X2, . . . , Xn) is a core issue in

risk management of financial institutions. In particular, this problem appears naturally

for an insurance company. Any insurer is exposed to different risk factors (e.g., non-life

risk, longevity risk, credit risk, market risk, operational risk), has different business

lines, or has an exposure to several portfolios of clients. In this regard, one typically

attempts to measure the risk of a sum, S =
∑n

i=1
Xi or of another aggregation function of
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Introduction xiii

the risk vector X , in which the individual risks Xi depict losses (claims of the different

customers, changes in the different market risk factors, . . . ) using a risk measure such

as the variance, the VaR, or the tail value-at-risk1 (TVaR). It is clear that solving this

problem is mainly a numerical issue once the joint distribution of (X1, X2, . . . , Xn) is

completely specified. Estimating a multivariate distribution or testing its adequacy is

in general a difficult task. In many cases, the actuary will be able to use mathematical

and statistical techniques to describe the marginal risks Xi , but the dependence among

the risks is not available, or only partially known. In other words, the assessment of

portfolio risk based on specific models is prone to model misspecification (model risk).

From a mathematical point of view, it is often convenient to assume that the random

variables Xi are mutually independent, because powerful and accurate computation

methods such as Panjer’s recursion and the technique of convolution can then be

applied. In this case, one can also take advantage of the central limit theorem, which

states that the sum of risks, S, is approximately normally distributed if the number

of risks is sufficiently high. In fact, the mere existence of insurance is based on the

assumption of mutual independence between the insured risks, and sometimes this

complies, approximately, with reality. In the majority of cases, however, the different

risks will be interrelated to a certain extent. For example, a sum S of dependent risks

occurs when considering the aggregate claims amount of a non-life insurance portfolio

because the insured risks are subject to some common factors such as geography,

climate, or economic environment. The cumulative distribution function of S can no

longer be easily specified.

Standard approaches to estimating a multivariate distribution of a portfolio

(X1, X2, . . . , Xn) consist in using a multivariate Gaussian distribution or a multivariate

Student t distribution, but there is ample evidence that these models are not always

adequate. More precisely, while the multivariate Gaussian distribution can be suitable

as a fit to a dataset “on the whole,” it is usually a poor choice if one wants to use it to

obtain accurate estimates of the probability of simultaneous extreme (“tail”) events or,

equivalently, if one wants to estimate the VaR of the aggregate portfolio S =
∑n

i=1
Xi at

a given high confidence interval; see McNeil et al. (2015). The use of the multivariate

Gaussian model is also based on the (wrong) intuition that correlations are enough

to model dependence (Embrechts et al., 1999, 2002). This fallacy also underpins the

variance-covariance standard approach that is used for capital aggregation regulatory

frameworks such as Basel III and Solvency II, and which also appears in many risk

management frameworks in the industry. Furthermore, in practice, there are not enough

observations that can be considered as tail events. In fact, there is always a level be-

yond which there is no observation. Therefore, if one makes a choice for modeling tail

dependence, it has to be somewhat arbitrary.

In the literature, one can find flexible multivariate models that allow a much better

fit to the data, for example using pair copula constructions and vines (see, e.g., Aas

et al., 2009 or Czado, 2010 for an overview). While these models have theoretical and

intuitive appeal, their successful use in practice requires a dataset that is sufficiently

1 In the literature it is also called the expected shortfall and the conditional value-at-risk, among others.
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xiv Introduction

rich. However, no model is perfect, and while such developments are clearly needed

for an accurate assessment of portfolio risk, they are only useful to regulators and risk

managers if they are able to significantly reduce the model risk that is inherent in risk

assessments.

B. Measuring Aggregate Risk

Insurance companies essentially exchange premiums against (future) random claims.

Consider a portfolio containing n policies, and let Xi , i = 1, 2, . . . , n, denote the loss,

defined as the random claim net of the premium, of the ith policy. In order to protect

policyholders and other debtholders against insolvency, the regulator will require the

portfolio loss S = X1 + X2 + · · ·+ Xn to be “low enough” as compared to the available

resources, say a capital requirement K , which means that the available capital K has to

be such that S −K is a “safe bet” for the debtholders, i.e., one is “reasonably sure” that

the event “S > K” is of minor importance (Tsanakas and Desli, 2005; Dhaene et al.,

2012).

It is clear that measuring the riskiness of S = X1+X2+ · · ·+Xn is of key importance

for setting capital requirements. However, there are several other reasons for studying

the properties of the aggregate loss S. Indeed, an important task of an enterprise risk

management (ERM) framework concerns capital (risk) allocation, i.e., the allocation

of total capital held by the insurer across its various constituents (subgroups), such

as business lines, risk types, and geographical areas, among others. Indeed, doing

so makes it possible to redistribute the cost of holding capital across the various

constituents so that it can be transferred back to the depositors or policyholders in

the form of charges (premiums). Risk allocation also makes it possible to assess the

performance of the different business lines by determining the return on allocated

capital for each line. Finally, the exercise of risk aggregation and allocation may help

to identify areas of risk consumption within a given organization and thus to support

the decision-making concerning business expansions, reductions, or even eliminations;

see Panjer (2001) and Tsanakas (2009).

When measuring the aggregate risk S, it is also important to consider the context at

hand. In particular, different stakeholders may have different perceptions of riskiness.

For example, depositors and policyholders mainly care only about the probability

that the company will meet its obligations. Regulators primarily share the interest of

depositors and policyholders and establish rules to determine the required capital to

be held by the company. However, they also care about the magnitude of the loss given

that it exceeds the capital held, as this is the amount that needs to be funded by society

when a bailout is needed. Formally, they care about the shortfall of the portfolio loss

S with solvency capital requirement �(S); that is,

(S − �(S))+ := max(0, S − �(S)). (0.1)

The shortfall is thus part of the total loss that cannot be covered by the insurer. It is

also referred to as the loss to society or the policyholders’ deficit. In view of their

limited liability, shareholders do not really have to care about the residual risk but
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Introduction xv

rather focus on the properties of the variable S − (S − �(S))+ = min(S, �(S)). In

summary, various stakeholders may have different perceptions and sensitivities with

respect to the meaning of the risk they run, and they may employ different paradigms

for defining and measuring it.

As for measuring the risk, the two most influential risk measures are the value-at-

risk (VaR) and the tail value-at-risk (TVaR).2 For a given confidence level α, they are

denoted by VaRα and TVaRα, respectively, and are defined as

VaRα (S) = min{x | P(S ≤ x) ≥ α}, 0 < α < 1 (0.2)

and

TVaRα (S) =
1

1 − α

∫ 1

α

VaRq (S) dq, 0 < α < 1. (0.3)

So, VaRα is the minimum loss one observes with probability 1 − α, whereas TVaRα

is the average of all upper VaRs. A general class of risk measures that includes VaR

and TVaR is the distortion risk measures, which are essentially weighted averages of

VaRs.

Another interesting risk measure that is not in this class is the “tail risk,” which is

the probability that the aggregate risk exceeds some level K , i.e., P(S ≥ K ).

C. Regulatory Frameworks

The report of the Basel Committee on Banking Supervision (2010) describes the mod-

eling methods used by financial firms and regulators in various countries to aggregate

risk. It also aims to identify the conditions under which these aggregation techniques

perform as anticipated in the model and to suggest potential improvements. The re-

port expresses doubts about the reliability of internal risk aggregation results that

incorporate diversification benefits: “Model results should be reviewed carefully and

treated with caution, to determine whether claimed diversification benefits are reliable

and robust.” In this subsection, we very briefly summarize how the main “regulatory

frameworks” deal with risk aggregation and diversification.

Basel III Regulation for Banks

One calculates a bank’s overall minimum capital requirement as the sum of capital

requirements for the credit risk, operational risk, and market risk, without recognizing

possible diversification benefits between the three risk types. As diversification is not

acknowledged, the practice of adding up capital is seen as a conservative approach.

However, this also depends on the risk measure that is used for establishing capital. If

VaR is used, it might indeed occur that the VaR of the aggregate risk is higher than the

sums of the individual VaRs. By contract, if a coherent risk measure � is used, then it

always holds that �(X1 + · · · + Xn) ≤ �(X1) + · · · + �(Xn).

2 VaR appears to be the most popular risk measure in practice, among both regulators and risk managers;

see, for example, Jorion (2006).
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xvi Introduction

As for market risk, banks have the choice between two methods. They may benefit

from diversification if they use an internal model approach (IMA). With the standard-

ized measurement method (SMM), the minimum capital requirement for market risk

is the sum of the capital charges calculated for each individual risk type (interest rate

risk, equity risk, foreign exchange risk, commodities risk, and price risk in options).

Solvency II

The Solvency Capital Requirement (SCR) under Solvency II is defined as the VaR at

99.5 % over a time horizon of one year. When aggregating risks, insurers may benefit

from diversification: They have the option to use an internal model (without any

particular method prescribed) or a standard formula. The standard formula aggregates

risks using a correlation matrix (variance-covariance approach) to take dependencies

into account.

Comparison and Comments on Regulatory Frameworks

Generally, regulatory rules incorporate diversification by taking into account some

correlation effect to reduce the total capital (at least in some subcategories). Overall,

we observe that regulators all implicitly assume that the sum of the risk numbers is the

worst possible situation. “No diversification benefits” is then synonymous to “adding

up risk numbers (VaRs).”

The easiest method to aggregate risks is the variance-covariance approach (which is

explicitly mentioned in Solvency II above and is also used by the Australian regulator

OSFI (2014)). It builds on the assumption that the correlation matrix is enough to de-

scribe the dependence and that it is possible to aggregate risks based on this correlation

matrix. Its strength is in its being a simple approach, but it is only a correct approach

for elliptical multivariate distributions, such as the Gaussian multivariate distribution.

Furthermore, correlation is a linear measure of dependence and does not capture tail

dependence adequately. Using such a method to aggregate risk may perhaps be fine for

having some idea on the distribution “globally” but fails when it comes to assess the

risk in the tail; also note that capital requirements are typically based on tail risk mea-

sures, such as VaR at 99.5 %, which essentially reflects the outcome of a 1-in-200-year

scenario.

Instead of using the variance-covariance approach, one may use copulas to aggregate

the individual risks. This approach is rather flexible and allows one to separate the risk

assessment of the marginal distribution of individual risks and their dependence. By

specifying a given copula to model some dependence, it is then possible to recognize

tail dependence among some risks. However, determining the “right” copula to use is

a very hard task that is prone to significant model risk, as we will see later in this book.

Statistical methods to fit a multivariate model involve large numbers of parameters and

copula families. In addition, understanding the outputs of the model will then require

good expertise in the copula approach to understand the impact of each assumption

made on the dependence. This is a concern and a challenge among institutions.
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Another way to capture tail risks and tail dependence is to understand “where the

dependence comes from” and to model the real risk drivers of the dependence be-

tween individual risks of the portfolio and understand their interactions. The report

of the Basel Committee on Banking Supervision (2010) suggests using “scenario-

based aggregation.” Aggregation through scenarios boils down to determining the

state of the firm under specific events and summing profits and losses for the var-

ious positions under the specific event. In other words, it means that one needs

to incorporate information that one knows about the dependence in some specific

states.

As observed in the report of the Basel Committee on Banking Supervision (2010),

the results of scenario-based aggregation are easier to interpret, with more meaningful

economic and financial implications, but use of this method again requires deep exper-

tise to identify risk drivers, derive meaningful sets of scenarios with relevant statistical

properties, and then use them to obtain a full loss distribution. A lot of the inputs in

these kinds of model come from experts’ judgements. Overall, there is no clear unique

solution to the problem of risk aggregation. Each method has its pros and cons and

may be helpful in some situations and useless in others.

D. Overview of the Contents

As described in the introduction, the main topic of the book is to establish risk bounds

for aggregate risk functionals under various forms of model uncertainty for the un-

derlying model. The model uncertainty is described by different types of (partial)

knowledge on the underlying model: knowledge of the marginals, various forms of

partial knowledge of the dependence structure, or knowledge of the structure of the

model, as given for example by (partially specified) factor models or by (partially

specified) subgroups of the model. An important part of the book addresses the possi-

ble improvement of risk bounds due to information on various functionals of the risk

vector, in particular given by moment bounds for the aggregate portfolio. Combination

with a neighborhood model assumption yields further improvement of the risk bounds.

The book consists of four main parts. The basic assumption in Parts I–III in order to

derive risk bounds is that the marginal distributions of the risk vector X = (X1, . . . , Xn)

are known, say Xi ∼ Fi , 1 ≤ i ≤ n. This assumption can be realistically made in many

applications since it is much easier to model and test simple hypotheses compared to

the task of modeling and testing the joint distribution of X . Throughout the book, we

present focus on risk bounds for the aggregated portfolio S =
∑i=n

i=1
. Nevertheless in

Parts I–III the assumed knowledge of the marginals makes it possible to also derive

various risk bounds for other risk functionals, for example, for the maximal risk. In

Part IV, we do not assume knowledge of the marginals but only use information that

pertains to a portfolio sum S.

In Part I, an introduction to the problem of risk bounds with information on the

marginal distributions is given. Also, a basic algorithm to determine these bounds –

the rearrangement algorithm – and a basic solution method – the dual bounds – are

introduced.
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In Chapter 1, we introduce some basic notions of risk measures (like VaR, TVaR,

and convex risk measures) and describe some corresponding worst case VaR and TVaR

portfolios. We also give a rearrangement formulation of various forms of determining

worst or best case risk bounds. We describe the connection of upper and lower risk

bounds to convex ordering properties, discuss comonotonicity and countermonotonic-

ity (antimonotonicity), and give some basic results to obtain worst case VaR portfolios

resp. portfolios with maximal tail risk.

The “standard bounds” for tail risks go back to classical sources, like Sklar (1973) or

Moynihan et al. (1978). For n = 2 they are shown in Makarov (1981) and Rüschendorf

(1982) to be sharp, but for n > 2 they typically only deliver rough (i.e., not necessarily

sharp) bounds.

The conditional moment method gives an upper bound on the tail risk of the

portfolio sum in terms of conditional moments of the marginals. This type of upper

risk bound produces sharp bounds under a mixing condition on the upper tail. In the

final subsection of this part, we discuss in more detail the notion of mixability, describe

some basic results due to Wang and Wang (2011, 2016) on mixability, and explain its

role in the determination of convex minima of portfolio sums and similarly for best

and worst case portfolios.

Chapter 2 is devoted to the motivation and introduction of the rearrangement algo-

rithm (RA) as introduced in Puccetti and Rüschendorf (2012a), which is a fundamental

tool to determine sharp upper and lower bounds for the tail risks resp. for the VaR. It is

basically motivated by the formulation of the problem of determining risk bounds as

a rearrangement problem and in a second step by a further reduction to an assignment

problem. Also, a variation of the RA, the block rearrangement algorithm (BRA), is

introduced, which improves some aspects of the RA. Several interesting applications

of these algorithms are indicated.

Chapter 3 gives an introduction to Hoeffding–Fréchet functionals, which describe

the largest resp. the smallest value of a risk functional over all possible dependence

structures, when fixing the marginals. The main result is a duality theorem for these

functionals that is a far reaching extension of the dual representation in the Monge–

Kantorovich mass transportation problem. A reduction of the admissible dual func-

tions to a simple class of admissible dual functions introduced in Embrechts and

Puccetti (2006b) leads to good dual bounds for the tail risk. Sharpness of these bounds

is established under a mixing condition in the homogeneous case in Puccetti and

Rüschendorf (2013).

An easy-to-calculate upper bound for the worst case VaR of an aggregated portfolio is

given by the TVaR of a corresponding comonotonic sum. In Chapter 4 we derive asymp-

totic sharpness of this upper TVaR bound under an asymptotic mixing condition. A

version of this result also holds in the infinite mean case and in the inhomogeneous case.

In contrast to Part I, we assume in Part II not only that we know the marginal

distributions of the risk vector X = (X1, . . . , Xn), say Xi ∼ Fi , 1 ≤ i ≤ n, but that we

have additional information on the dependence among these n variables.

In Chapter 5 we present the method of improved standard bounds. We review

bounds on the distribution function that improve upon the Hoeffding–Fréchet bounds
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by including, in addition to the marginal information, some positive or negative depen-

dence information on the distribution functions of the form F ≤ G or F ≥ G. These

improved Hoeffding–Fréchet bounds lead to improved upper and lower VaR bounds.

To do so, we build on results of Williamson and Downs (1990), Denuit et al. (1999),

Embrechts et al. (2003), Rüschendorf (2005), Embrechts and Puccetti (2006a,b), and

Puccetti et al. (2016), among others. We present some examples in which the infor-

mation significantly reduces the standard bounds. Further examples of this type are

discussed in Rüschendorf (2017a,b). The last section of this chapter presents an exten-

sion of the method of improved standard bounds by Lux and Rüschendorf (2018) to

include two-sided dependence information of the form G ≤ F ≤ H or related bounds

for the copula C or for the survival functions F.

Chapter 6 deals with bounds on VaR under the additional constraint that a bound

on the variance of the sum is known (as in Bernard et al., 2017c) or that information

on higher moments on the sum (as in Bernard et al., 2017a) is available. As compared

to assuming only knowledge of the marginal means or variances (so-called moment

bounds), knowledge of the marginal distributions may make it possible to improve the

VaR bounds. However, when supplementing the information on the marginal distribu-

tions with information on the portfolio variance, it turns out that, when the variance

constraint is “low” enough, the analytical VaR-bounds coincide with moment bounds

(studied in full detail in Part IV). We then propose a numerical method based on

the RA-algorithm to approximate sharp VaR bounds given the marginal constraints

and additionally bounds on the variance of the sum. A corresponding rearrangement

algorithm is no longer available if only moment bounds are assumed. We show that

for large portfolios, our analytical bounds are nearly sharp. However, in the context of

smaller portfolios (or when the portfolio depicts significant concentration), one cannot

expect the bounds to be sharp. The RA-algorithm can accommodate this situation and

makes it possible to approximate sharp bounds. As a by-product, this algorithm also

sheds light on the composition of extreme portfolios.

Chapter 7 is devoted to studying the case when information on the joint distribution

of the risk vector X = (X1, . . . , Xn) is partially available, by knowing the conditional

distribution of X on a subset S in Rn the marginal distributions as well as the probability

of the subset, or alternatively, knowing bounds for the distribution function FX resp.

the copula CX on the corresponding subsets. For example, it may be the case that

CX of X is known on a central domain due to availability of sufficient statistical

data, allowing for a precise model within this domain. Alternatively, some positive or

negative dependence information may be available in the upper or lower tail area.

We derive VaR bounds in several situations of interest in which the conditional

distribution of X is known on a central domain. The corresponding improvements

of the Hoeffding–Fréchet bounds are derived in Rachev and Rüschendorf (1994),

Nelsen et al. (2004), Tankov (2011) and Bernard and Vanduffel (2014) in the two-

dimensional case and by Puccetti et al. (2016) and Lux and Papapantoleon (2019) in

the n-dimensional case.

We solve several cases exactly or numerically when we know the distribution func-

tion on a subset or we know the conditional distribution on a subset (Bernard and
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Vanduffel, 2015; Puccetti et al., 2016). While knowing the distribution function F on

an open domain A implies knowledge of PX on A, the converse direction is not valid,

even for rectangle domains A. So both types of information are typically different.

Based on a numerical approach using the RA-algorithm, the value of this type of

information for improving VaR bounds for the sum is determined

In Part III the risk bounds and range of dependence uncertainty obtained in the

unconstrained case is essentially improved by including relevant structural information

on the underlying class of models. This additional structural information may lead to

a positive or a negative dependence restriction and thus induce improvements of the

upper resp. the lower risk bounds, as shown in Part II.

We deal in this part with several types of structural information, investigate their

impact, and show in several applications their potential in reducing dependence uncer-

tainty. In some applications it is possible to combine these structural assumptions with

dependence assumptions, as in Part II, leading to particular useful reduction results.

In Chapter 8 we consider first in Section 8.1 the case that besides the one-dimensional

marginals, some higher dimensional marginals are also known. This assumption allows

us to derive improvements of the classical Fréchet bounds by using a duality theorem.

For general higher-dimensional marginal systems, the “reduction method” allows us to

derive good upper and lower bounds by an associated reduced risk model with simple

marginals. This reduced problem can be solved by the RA. If the higher-dimensional

marginals exhibit strong positive dependence, this leads to improvements of the lower

bounds in comparison to the unconstrained case; if they exhibit negative dependence,

this leads to improvements of the upper bounds.

In Section 8.2 we consider a general case of additional constraints given by the

distribution or the expectations of a class of functionals. This includes in principle the

constraints due to higher-dimensional marginals (infinite set of restrictions) but also

the case of variance constraints as in Part II. We give several improved lower and upper

dual bounds for such classes of constraints. Using martingale constraints (infinite set of

restrictions), this method can also be used to derive improved price bounds for options.

Chapter 9 gives a detailed discussion on partially specified factor models (PSFM).

This model assumption is based on an underlying factor model Xi = f i (Z, εi) with a

systematic risk factor Z and individual risks ε1, . . . , εn. In comparison to the usual

assumption of completely specified factor models, which is in general a hard to verify

assumption, in PSFMs only the joint distributions of (εi, Z ) are specified, which is

a much simpler to verify model assumption. We show that the assumption of PSFM

may lead to strongly reduced risk bounds and that it can be combined in a particular

effective and flexible way with other dependence assumptions, like variance bounds

for the aggregated portfolio.

Chapter 10 deals with a systematic investigation of the assumption that the risk

vector X is split into k subgroups. For a comparison vector Y , conditions are given

for the comparison of the subgroup sums of X and Y and further for the compar-

ison of the copulas of the vectors of subgroup sums to imply a relevant compari-

son theorem between the aggregated portfolios
∑n

i=1
Xi and

∑n
i=1

Yi . Also, this cri-

terion allows flexible and effective applications and can be combined in a useful
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way with further constraints, for example, with the assumption of PSFMs within the

subgroups.

In Part IV risk bounds are studied under the assumption that moment bounds of the

portfolio sums are given. It is shown in Chapter 6 that adding a variance constraint on

the portfolio loss S =
∑

Xi in addition to knowledge of the marginal distribution of the

portfolio components Xi may lead to an improved VaR upper bound that corresponds

to the classic Cantelli moment bound (involving mean and variance). This observation

motivates us to study risk bounds for a portfolio sum S =
∑

Xi when the mean of S

(but not the marginal distributions of its components) is given as well as some of its

higher order moments. This approach to assessing model risk is, for instance, useful

when loss statistics are only available at an aggregate level.

In Chapter 11 we study moment bounds for the risk measures VaR, TVaR, and the

range value-at-risk (RVaR), which can be seen as a generalization of VaR and TVaR.

Most of our results assume that only the first two moments are known (but no other

higher-order moment). For the important case of VaR, however, we propose under an

additional domain restriction a method that can in principle deal with any number of

known moments. As a main tool for deriving the bounds, we use convex ordering and

its generalization, s-convex order.

In Chapter 12 we provide a detailed study on moment bounds for distortion risk

measures. In Section 12.1 we build on results in Cornilly et al. (2018) to derive

moment bounds under an additional domain restriction. In Section 12.2 we dispense

with domain restrictions and derive bounds using the tool of isotonic projections

combined with the use of the Cauchy–Schwarz inequality.

In Chapters 13 and 14 we study the influence of structural information on the

moment bounds for VaR, TVaR, and RVaR. First, in Chapter 13, we study bounds

when, in addition to moment information, it is also known that the distribution is

unimodal. Second, in Chapter 14 we study bounds when the distribution is assumed to

stay in the neighborhood of a reference distribution. We use the Wasserstein distance

as a metric to determine the neighborhood and use the tool of isotonic projections to

obtain sharp bounds on VaR, TVaR, and RVaR.
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