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The basic assumption in Parts I–III of this book in order to derive risk bounds is

that the marginal distributions of the risk vector X = (X1, . . . , Xn) are known, say

Xi ∼ Fi , 1 ≤ i ≤ n. This can be realistically assumed in many applications since it is

much easier to model and test simple hypotheses compared to the task of modeling and

testing the joint distribution of X . We often deal with risk bounds for the aggregated

portfolio S =
∑i=n

i=1
(Xi), but we also present risk bounds for other risk functionals, for

example for the maximal risk, for the variation max |Xi − X j | of the risks, or for the

risk exposure in certain domains.

In Chapter 1, we introduce some basic notions of risk measures (like VaR, TVaR,

and convex risk measures) and describe some corresponding worst case VaR and

TVaR portfolios. We also give a rearrangement formulation to determine worst or

best case risk bounds. We describe the connection of upper and lower risk bounds

to convex ordering properties, discuss comonotonicity and countermonotonicity (or

antimonotonicity), and give some basic results to obtain worst case VaR portfolios

resp. portfolios with maximal tail risk.

The “standard bounds” for tail risk go back to classical sources like Sklar (1973) or

Moynihan et al. (1978). For n = 2 they are shown in Makarov (1981) and Rüschendorf

(1982) to be sharp, but for n > 2 they typically only deliver rough bounds.

The conditional moment method gives an upper bound on the tail risk of the

portfolio in terms of conditional moments of the marginals. This type of upper risk

bound produces sharp bounds under a mixing condition on the upper tail. In the final

subsection of this part, we discuss in more detail the notion of mixability, describe

some basic results due to Wang and Wang (2011, 2016) on mixability, and explain its

role in the determination of convex minima of portfolio sums and similarly for best

and worst case portfolios.

Chapter 2 is devoted to the motivation and introduction of the rearrangement algo-

rithm (RA) as introduced in Puccetti and Rüschendorf (2012a). This is a fundamental

tool to determine sharp upper and lower bounds for the tail risk resp. for the VaR. It is

basically motivated by the formulation of the problem of determining risk bounds as

a rearrangement problem and in a second step by a further reduction to an assignment

problem.

Chapter 3 gives an introduction to Hoeffding–Fréchet functionals, which describe

the largest and the smallest value of a risk functional over all possible dependence

structures, when fixing the marginals. The main result is a duality theorem for these

functionals, which is a far reaching extension of the dual representation in the Monge–

Kantorovich mass transportation problem. A reduction of the admissible dual functions

to a simple class of admissible dual functions introduced in Embrechts and Puccetti

(2006b) leads to good dual bounds for the tail risk. Sharpness of these bounds was

established under a mixing condition in the homogeneous case in Puccetti and Rü-

schendorf (2013).
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A simple upper bound for the worst case VaR risk is given by the TVaR bound, i.e.,

the TVaR of the comonotonic risk vector. In Chapter 4 we derive asymptotic sharpness

of this upper TVaR bound under an asymptotic mixing condition. A version of this

result also holds in the infinite mean case and in the inhomogeneous case.
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1 Risk Bounds with Known Marginal

Distributions

As described in the introduction, a key problem of risk analysis is to derive (sharp)

risk bounds on a portfolio S = X1+ · · ·+ Xn under the given distributional information

on a risk vector X = (X1, . . . , Xn). In this chapter, we derive several explicit results

for this problem under the assumption that only the marginal distributions Fj of X j

are known, but the dependence structure of X is completely unknown. In particular we

introduce some basic notions of risk theory, such as worst case value-at-risk and tail

value-at-risk portfolios, comonotonic risk vectors, the connection of upper risk bounds

to convex ordering, and some basic results to obtain worst case value-at-risk portfolios.

A more detailed presentation and extension of these results is given in Rüschendorf

(2013, Chapters 2–4). Some detailed mixing results in Section 1.4 are due to several

papers of Wang and coauthors (see Wang and Wang, 2011).

1.1 Some Basic Notions and Results of Risk Analysis: VaR, TVaR,
Comonotonicity, and Convex Order

There are several risk measures of interest, like the value-at-risk (VaR), the tail value-

at-risk (TVaR), and the classes of convex risk measures or of distortion risk measures.

The VaR risk measure at level α, VaRα, α ∈ (0, 1) of the portfolio S is defined as the

α-quantile of the distribution of S, i.e.,

VaRα (S) = F−1
S (α) = inf{x ∈ R; FS (x) ≥ α}; (1.1)

we also make use of the upper VaR as an upper α-quantile, i.e.,

VaR+α (S) = sup{x ∈ R; FS (x) ≤ α}. (1.2)

The TVaR risk measure at level α, TVaRα, takes into account also the magnitude

of the risk above the α-quantile and is defined as

TVaRα (S) =
1

1 − α

∫ 1

α

VaR+u (S) du =
1

1 − α

∫ 1

α

VaRu (S) du. (1.3)

From the definition it follows that TVaR is an upper bound of VaR, i.e., for α < 1 it

holds that

VaRα (S) ≤ VaR+α (S) ≤ TVaRα (S). (1.4)
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6 Risk Bounds with Known Marginal Distributions

In comparison to VaR, TVaR has the important property of being a convex risk measure.

A risk measure � is said to be convex (Föllmer and Schied, 2004) if it is monotone,

translation invariant, and satisfies the important convexity condition,

TVaRα (aX + (1 − a)Y ) ≤ a TVaRα (X ) + (1 − a) TVaRα (Y ). (1.5)

If the risk measure � is also positive homogeneous, then it is called coherent.

Thus, using TVaR as a risk measure, a diversified portfolio is preferred concerning

the magnitude of risk in comparison to an undiversified portfolio. The left TVaR

measure at level α, LTVaRα is similarly defined and considers the left tails (best case)

of risks:

LTVaRα (S) =
1

α

∫

α

0

VaRu (S) ds. (1.6)

An important property of a risk measure that is convex law invariant, i.e., one that

only depends on the marginal distribution, is its consistency with respect to convex

order ≤cx.

Definition 1.1 (Convex order) Let X and Y be two random variables with finite

means. X is smaller than Y in convex order, denoted by X ≤cx Y , if for all convex

functions f ,

E f (X ) ≤ E f (Y ), (1.7)

whenever both sides of (1.7) are well defined.

A law-invariant convex risk measure � (e.g., TVaR) is consistent with respect to

convex order on proper probability spaces such as L1 (integrable random variables)

and L∞ (bounded random variables). In consequence it holds that X ≤cx Y implies

TVaRα (X ) ≤ TVaRα (Y ), (1.8)

see Chapter 4 of Föllmer and Schied (2004), Jouini et al. (2006), Bäuerle and Müller

(2006), and Burgert and Rüschendorf (2006). From this section on, we consider as

the basic space of risks X = L1 and assume that all marginal distributions of a risk

vector X have finite first moments when dealing with TVaR. For given distribution

functions F1, . . . , Fn, let F (F1, . . . , Fn) denote the Fréchet class of all n-dimensional

distribution functions F with marginal distribution functions F1, . . . , Fn. The classical

Fréchet bounds characterize the Fréchet class F (F1, . . . , Fn).

Theorem 1.2 (Fréchet bounds)

a) For F ∈ F (F1, . . . , Fn) it holds that

F−(x) :=
(

n
∑

i=1

Fi (xi) − (n − 1)
)

+

≤ F (x)

≤ F+(x) := min
1≤i≤n

Fi (xi), x ∈ Rn.

(1.9)

F−, F+ are called lower resp. upper Fréchet bounds (also called Hoeffding–Fréchet

bounds).
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1.1 Some Basic Notions and Results of Risk Analysis 7

b) F+ ∈ F (F1, . . . , Fn); if n = 2 then F− ∈ F (F1, F2).

c) For a distribution function F on Rn, it holds that

F ∈ F (F1, . . . , Fn) ⇐⇒ F− ≤ F ≤ F+.

In particular, there exists for any n a largest distribution function with marginals

Fi , the upper Fréchet bound F+. For n = 2 there exists a smallest distribution function

with marginals Fi , the lower Fréchet bound. In general, the upper and lower bounds in

(1.9) are sharp. The upper bound F+ is attained by the comonotonic risk vector.

Definition 1.3 (Comonotonicity, countermonotonicity)

Let F1, . . . , Fn be one-dimensional distribution functions, and let U ∼ U (0, 1) be

uniformly distributed on [0, 1]. Then:

a) X c := (F−1
1 (U), . . . , F−1

n (U)) (1.10)

with F−1
i

(α) = inf{x ∈ R : Fi (x) ≥ α} is called a comonotonic risk vector.

b) For n = 2,

Xc := (F−1
1 (U), F−1

2 (1 −U)) (1.11)

is called a countermonotonic (antimonotonic) risk vector.

Comonotonic risk vectors X are characterized by the fact that the components of X

are ordered in the same way.

The co- resp. countermonotonic risk vectors realize the upper resp. lower Fréchet

bounds F+, F−, i.e.,

X c ∼ F+ and for n = 2, Xc ∼ F−. (1.12)

In terms of the lower orthant order ≤lo defined by the pointwise ordering of the

distribution functions, therefore, for any vector X with marginal distributions Fi it

holds by the Fréchet bounds that

X ≤lo X c (1.13)

and for n = 2,

Xc ≤lo X . (1.14)

The following basic result due to Meilijson and Nadas (1979) describes the role of the

comonotonic vector as a worst case model for the portfolio S =
∑n

i=1
Xi with respect

to all law-invariant convex risk measures.

Theorem 1.4 (Comonotonic risk vector and convex order)

Let X = (X1, . . . , Xn) be a risk vector with marginal distributions Fi . Then

a)

n
∑

i=1

Xi ≤cx

n
∑

i=1

X c
i , (1.15)

i.e., the portfolio of comonotonic risks is the worst case portfolio with respect to

convex order.
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8 Risk Bounds with Known Marginal Distributions

b) E
(

n
∑

i=1

Xi − t
)

+

≤ E
(

n
∑

i=1

X c
i − t
)

+

(1.16)

for all t. Moreover, E
(

∑n
i=1

X c
i
− t
)

+

=: Ψ+(t), where

Ψ+(t) = inf
∑

vi=t

n
∑

i=1

E(Xi − vi)+. (1.17)

The statement in b) says that the excess of loss risk functional of the portfolio is

maximized by the comonotonic risk vector.

For n = 2, a countermonotonic risk vector Xc = (F−1
1

(U), F−1
2

(1 −U)) realizes the

convex minimum of portfolio sums of variables Xi with distribution functions Fi .

Proposition 1.5 (Countermonotonic risk vector and convex order) Let X =

(X1, X2) be a risk vector of size n = 2 with marginal distribution functions Fi . Then

for all Xi ∼ Fi it holds that

F−1
1 (U) + F−1

2 (1 −U) ≤cx X1 + X2. (1.18)

In consequence, for n = 2 we have for all Xi ∼ Fi ,

X1,c + X2,c ≤cx X1 + X2 ≤cx X c
1
+ X c

2
, (1.19)

where Xc = (X1,c, X2,c ).

We define the worst case risks of the portfolio S =
∑n

i=1
Xi , where Xi have marginal

distribution functions Fi with respect to VaR and TVaR by

VaRα := sup
{

VaRα (S); S =

n
∑

i=1

Xi, Xi ∼ Fi, 1 ≤ i ≤ n
}

and TVaRα := sup
{

TVaRα (S); S =

n
∑

i=1

Xi, Xi ∼ Fi, 1 ≤ i ≤ n
}

.

(1.20)

Similarly, the best case of risks at level α is defined as

VaR
α

:= inf
{

VaRα (S); S =

n
∑

i=1

Xi, Xi ∼ Fi, 1 ≤ i ≤ n
}

and TVaR
α

:= inf
{

LTVaRα (S); S =

n
∑

i=1

Xi, Xi ∼ Fi, 1 ≤ i ≤ n
}

.

(1.21)

Then we get by means of Theorem 1.4 the following important connections between

these notions. For a risk vector X , let S =
∑n

i=1
Xi be the portfolio sum and Sc

=
∑n

i=1
X c
i

be the corresponding portfolio sum of the comonotonic risk vector X .

Theorem 1.6 Let X be a risk vector with distribution function F ∈ F (F1, . . . , Fn).

Then for the portfolio S =
∑n

i=1
Xi , it holds that

a) VaRα (S) ≤ TVaRα (S) ≤ TVaRα (Sc) =

n
∑

i=1

TVaRα (Xi), (1.22)

b)

n
∑

i=1

LTVaRα (Xi) = LTVaRα (Sc) ≤ LTVaRα (S) ≤ VaRα (S), (1.23)
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1.2 Standard Bounds, VaR Bounds, and Worst Case Distributions 9

c) VaRα ≤ TVaRα =

n
∑

i=1

TVaRα (Xi)

and LTVaR
α
=

n
∑

i=1

LTVaRα (Xi) ≤ VaR
α
,

(1.24)

d) VaRα (Sc) =

n
∑

i=1

VaRα (Xi). (1.25)

Proof The inequality VaRα (S) ≤ TVaRα (S) is immediate from the definition of

TVaRα (S). Since TVaRα is a convex law-invariant risk measure, we obtain the in-

equality TVaRα (S) ≤ TVaRα (Sc) by the consistency with respect to convex order

from Theorem 1.4.

Using that

α LTVaRα (S) + (1 − α) TVaRα (S) = ES, (1.26)

we obtain

LTVaRα (Sc) =

n
∑

i=1

LTVaRα (Xi) ≤ LTVaRα (S) ≤ VaRα (S).

Finally for Sc
=

∑n
i=1

F−1
i

(U), it holds by the comonotonicity of the summands:

Sc ≥ VaRα (Sc)

if and only if for all i, Xi = F−1
i

(U) ≥ VaRα (Xi), i.e.,

VaRα (Sc) =

n
∑

i=1

VaRα (Xi), (1.27)

and TVaRα (Sc) =
1

1 − α

∫ 1

α

VaRu (Sc) du (1.28)

=

1

1 − α

∫ 1

α

n
∑

i=1

VaRu (Xi) du =

n
∑

i=1

TVaRα (Xi). �

Remark 1.7 The inequalities (1.22) and (1.24) give a simple way to calculate an

upper bound for the worst case VaR, whereas inequality (1.23) gives a lower bound for

the best case VaR. The VaR of the comonotonic risk portfolio is easy to calculate, but

it turns out that it is not a worst case with respect to VaR. The comonotonic portfolio is,

however, a worst case portfolio with respect to TVaR, and hence the worst case TVaR

bound is easy to determine. ♦

1.2 Standard Bounds, VaR Bounds, and Worst Case Distributions

It is an important task to describe good upper bounds for the value-at-risk and to

determine worst case portfolios. The insight that the comonotonic portfolio is not the

worst case VaR portfolio was a surprise in the practice of risk analysis and led to a

rethinking of basic recommendations in risk regulation.
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10 Risk Bounds with Known Marginal Distributions

The standard bounds for the distribution function of the sum

M ≤n (t) = sup
{

P
(

n
∑

i=1

Xi ≤ t
)

; Xi ∼ Fi, 1 ≤ i ≤ n
}

,

m≤n (t) = inf
{

P
(

n
∑

i=1

Xi ≤ t
)

; Xi ∼ Fi, 1 ≤ i ≤ n
}

,

resp. for the corresponding tail risks

Mn(t) = sup
{

P
(

n
∑

i=1

Xi ≥ t
)

; Xi ∼ Fi, 1 ≤ i ≤ n
}

,

mn(t) = inf
{

P
(

n
∑

i=1

Xi ≥ t
)

; Xi ∼ Fi, 1 ≤ i ≤ n
}

,

have been known in the literature for a long time, see Sklar (1973), Moynihan et al.

(1978), Denuit et al. (1999), and Rüschendorf (2005).

Theorem 1.8 (Standard bounds) Let X = (X1, . . . , Xn) be a random vector with

marginal distribution functions F1, . . . , Fn. Then for any t ∈ R, it holds that

(

n
∨

i=1

Fi (t) − (n − 1)
)

+

≤ P
(

n
∑

i=1

Xi ≤ t
)

≤ min
(

n
∧

i=1

Fi (t), 1
)

, (1.29)

where
∧n

i=1
Fi (t) = inf{

∑n
i=1

Fi (ui);
∑n

i=1
ui = t} is the “infimal convolution” of the

(Fi), and
∨n

i=1
Fi (t) = sup{

∑n
i=1

Fi (ui);
∑n

i=1
ui = t} is the “supremal convolution” of

the (Fi).

Proof For any u1, . . . , un with
∑n

i=1
ui = t, it holds that

P
(

n
∑

i=1

Xi ≤ t
)

≥ P
(

n
⋃

i=1

(Xi ≤ ui)
)

,

≥

n
∑

i=1

Fi (ui), (1.30)

which implies the upper bound in (1.29). Similarly, using the Fréchet lower bound in

(1.9) we obtain

P
(

n
∑

i=1

Xi ≤ t
)

≥ P
(

X1 ≤ u1, . . . , Xn ≤ un
)

≥
(

n
∑

i=1

Fi (ui) − (n − 1)
)

+

. (1.31)

�
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1.2 Standard Bounds, VaR Bounds, and Worst Case Distributions 11

In general, the standard bounds in Theorem 1.8 are not sharp and can be considerably

improved. Define for general n,

An(t) :=
{

(x1, . . . , xn);

n
∑

i=1

xi ≤ t
}

,

A+n (t) :=
{

(x1, . . . , xn);

n
∑

i=1

xi < t
}

, t ∈ R1,

and let

(F1 ∧ F2)−(t) = inf{F1(x−) + F2(t − x); x ∈ R1}

denote the left continuous version of F1 ∧ F2; similarly, let (F1 ∨ F2)−(t) be the left

continuous version of F1 ∨ F2. In the case n = 2, it was proved independently in

Makarov (1981) and Rüschendorf (1982) that the standard bounds are sharp.

Theorem 1.9 (Sharpness of standard bounds, n = 2) If Xi have distribution

functions Fi , 1 = 1, 2, then

P(X1 + X2 ≤ t) ≤ M ≤
2

(t) = (F1 ∧ F2)−(t) (1.32)

and

P(X1 + X2 < t) ≥ m<

2 (t) = ((F1 ∨ F2)−(t) − 1)+. (1.33)

The proof of Theorem 1.9 given in Makarov (1981) uses direct arguments on the

copulas, while the proof in Rüschendorf (1982) is based on duality theory. This latter

proof allows us also to determine the worst case dependence structure.

On the unit interval [0, 1] supplied with the Lebesgue measure λ, define the random

variables

Y1(s) = F−1
1 (s), Y2(s) = F−1

2 (ϕ(S)), (1.34)

with ϕ(s) = 1 − s, 0 ≤ s ≤ h(t), and ϕ(s) = s, h(t) ≤ s ≤ 1. Then the random

variables Y1, Y2 maximize the distribution function of the sum at point t, i.e., they

maximize P(X1+ X2 < t). This means that they minimize the tail risk P(X1+ X2 ≥ t).

Proposition 1.10 (Maximizing (best case) pairs) The random variables defined

in (1.34) satisfy:

a) Y1 ∼ F1, Y2 ∼ F2,

b) P(Y1 + Y2 ≤ t) = M ≤
2

(t) = (F1 ∧ F2)−(t). (1.35)

Proof The Lebesgue measure λ is invariant with respect to ϕ, i.e., λϕ = λ. Therefore,

λYi = λ f
−1
i
◦ϕ
= λF

−1
i , and thus Yi ∼ Fi , i = 1, 2. Since F−1

i
◦ Fi (x) ≤ x, we obtain for

s = F1(u),

F−1
1 (s) + F−1

2 (h(t) − s) = F−1
1 ◦ F1(u) + F−1

2 (h(t) − F1(u))

= u + F−1
2 (F2(t − u)) ≤ u + (t − u) = t .
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