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Introduction

Despite the fact that complex networks are the driving force behind the investi-

gation of the spectra of graphs, it is not the purpose of this book to dwell on

complex networks. A generally accepted, all-encompassing de�nition of a complex

network does not seem to be available. Instead, complex networks are understood

by instantiation: the Internet, transportation (car, train, airplane) and infrastruc-

tural (electricity, gas, water, sewer) networks, biological molecules, the human brain

network, social networks, software dependency networks, are examples of complex

networks. There is such a large literature about complex networks, predominantly

in the physics community, that providing a detailed survey is a daunting task. We

content ourselves here with referring to some review articles by Strogatz (2001);

Newman et al. (2001); Albert and Barabási (2002); Newman (2003b), and to books

in the �eld by Watts (1999); Barabási (2002); Dorogovtsev and Mendes (2003);

Barrat et al. (2008); Dehmer and Emmert-Streib (2009); Newman (2010), and to

references in these works. Application of spectral graph theory to chemistry and

physics are found in Cvetkovíc et al. (1995, Chapter 8).

A few years ago, the study of complex networks has been called Network Science

Barabási (2016); Newman (2018). Networks consists of two main ingredients: (a)

a dynamic process, such as transport of items from node to node and (b) an

underlying topology or graph, over which the process evolves over time. In general,

the graph of the network is not �xed, but can change over time steered by some

second process. In time-varying networks, there are thus at least two processes,

which may be either independent or coupled by a third interaction process. The

best example, as experienced during the Covid pandemic, is epidemic spread on

a human contact graph: (a) the epidemic is governed by a viral infection process

and (b) the human mobility process creates the contact graph. Both processes may

be coupled by a third process, when viral awareness information is distributed and

humans can change contacts depending on whether people in their surrounding are

infected or not. Usually, the process on a graph speci�es the directions of links,

while the graph itself re�ects only link existence and is undirected.

In summary, most networks contain dynamic processes beside the graph. Net-
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2 Introduction

work science studies the duality between process and graph and thus encompasses

graph theory.

1.1 Graph of a network

The graph of a network, denoted by , consists of a set N of nodes connected

by a set L of links. Sometimes, nodes and links are called vertices and edges,

respectively, and are correspondingly denoted by the set and . Here and in

my book on Performance Analysis (Van Mieghem, 2014), a graph is denoted by

(N L) or ( ) to avoid con�icts with the expectation operator in proba-

bility theory. There is no universal notation of a graph, although in graph theory

= ( ) often occurs, while in network theory and other applied �elds, nodes

and links are used and the notation (N L) or ( ) appears. None of these

notations is ideal nor optimized, but fortunately in most cases, the notation for

a graph seems su cient. As explained in Devriendt and Van Mieghem (2019a)

and mentioned in the preface, any undirected, possibly weighted graph on nodes

can be represented in the 1-dimensional Euclidean space by a simplex, whose

vertices represent the nodes of the graph , but the edges of the simplex di er from

the links! Therefore, we adhere to nodes and link in the topology domain and we

talk about vertices, edges, angles and faces in the geometric domain. Besides the

graph and geometric domain, the third domain is the spectral domain, which is the

main focus of this book. Between these three di erent representations of a graph

, there is a one-to-one correspondence for undirected graphs, implying that all

information about the graph in one domain is preserved in another domain.

Graphs, in turn, can be represented by a matrix (art. 1). The simplest among

these graph-related matrices is the adjacency matrix , whose entries or elements

are

= 1{node is connected to node } (1.1)

where 1 is the indicator function and equal to one if the event or condition is true,

else it is zero. All elements of the adjacency matrix are thus either 1 or 0 and

is symmetric for undirected graphs. Unless mentioned otherwise, we assume in this

book that the graph is undirected and that and other graph-related matrices are

symmetric.

1.2 Eigenvalues and eigenvectors of a graph

If the graph consists of nodes and links, then art. 247 demonstrates that the

× symmetric adjacency matrix can be written as

= (1.2)

where the × orthogonal matrix contains as columns the normalized eigen-

vectors 1 2,..., of belonging to the real eigenvalues 1 2 ,
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1.3 Interpretation and contemplation 3

represented by the eigenvalue vector = ( 1 2 ), and where the matrix

= diag( ). The basic relation (1.2) is an instance of the general eigenvalue prob-

lem (art. 235) for an arbitrary square matrix with eigenvalue , where is not

necessarily an adjacency matrix,

= (1.3)

Assuming that the matrix has linearly independent eigenvectors, which implies

that the matrix is not defective nor has a Jordan form (Meyer, 2000), then the

eigenvalue equation (1.3) can be written for each solution = in terms of

the orthogonal matrix =
£

1 2 · · ·
¤
as

=

The assumption of linearly independent eigenvectors also means that rank( ) =

and that the inverse matrix 1 exists. Right-multiplying both sides by 1

yields

= 1

Art. 247 shows that symmetric matrices possess orthogonal eigenvectors, implying

that 1 = , which brings us to (1.2). The eigenvalue equation (1.3) and

its speci�c form for symmetric matrices (1.2) form the cornerstone of this book.

Usually, although other de�nitions occur, the spectrum of a graph refers to the

set of eigenvalues { }1 of a graph-related matrix and an eigenmode of an

operator or matrix is the eigenvector belonging to an eigenvalue.

This basic relation (1.2) equates the topology domain, represented by the adja-

cency matrix, to the spectral domain of the graph, represented by the eigensystem

in terms of the orthogonal matrix of eigenvectors and the diagonal matrix with

corresponding eigenvalues. The major di culty lies in the map from topology to

spectral domain, , because the inverse map from spectral to topology

domain, , consists of straightforward matrix multiplications. Thus,

most of the e orts in this book lie in computing or deducing properties of and ,

given . Even more con�ning, most endeavors are devoted to the diagonal matrix

of eigenvalues and the distribution and properties of the eigenvalues { }1
of and of other graph-related matrices. It is fair to say that not too much is

known about the eigenvectors and the distribution and properties of eigenvector

components. A state of the current art is presented by Cvetkovíc et al. (1997).

1.3 Interpretation and contemplation

One of the most studied eigenvalue problems is the stationary Schrödinger equation

in quantum mechanics (see, e.g., Cohen-Tannoudji et al. (1977)),

( ) = ( )
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4 Introduction

where ( ) is the wave function, is the energy eigenvalue of the Hamiltonian

(linear) di erential operator

=
}
2

2
+ ( )

in which the Laplacian operator is =
2

2 +
2

2 +
2

2 , } = 2 and ' 6 62 ×

10 34Js is Planck’s constant, is the mass of an object subject to a potential

�eld ( ) and is a three-dimensional location vector. The wave function ( )

is generally complex, but | ( )|2 represents the density function of the probability

that the object is found at position . The mathematical theory of second-order

linear di erential operators is treated, for instance, by Titchmarsh (1962, 1958).

While the interpretation of the eigenfunction ( ) of the Hamiltonian , the

continuous counterpart of an eigenvector with discrete components, and its corre-

sponding energy eigenvalue is well understood, the meaning of an eigenvector of

a graph is rather vague and not satisfactory. An attempt is as follows. The basic

equation (1.3) of the eigenvalue problem, combined with the zero-one nature of the

adjacency matrix , states that the -th component of the eigenvector belonging

to eigenvalue can be written as

( ) = ( ) =
X

=1

( ) =
X

neighbors( )

( ) (1.4)

where neighbors( ) = { N : = 1} denotes the set of all direct neighbors of

node . In a simple graph (art. 1), there are no self-loops, i.e. = 0, and the

eigenvector component ( ) multiplied by the eigenvalue equals the sum of the

other eigenvector components ( ) over all direct neighbors of node . Since all

eigenvectors of the adjacency matrix are orthogonal1 (art. 247), each eigenvector

can be interpreted as describing a di erent inherent property of the graph. The

precise meaning of that property depends upon the graph-related matrix viewed

as an operator that acts upon a vector or points in the -dimensional space. The

eigenvalue basic equation (1.2) says that there are only such inherent properties

and the orthogonality of or of the eigenvectors tells us that these inherent proper-

ties are independent. The above component equation (1.4) then expresses that the

value ( ) of the inherent property , belonging to the eigenvalue and speci�ed

by the eigenvector , at each node equals a weighted sum of those values ( )

over all its direct neighbors and each such sum has a same weight 1 (provided

6= 0, else the average over all direct neighbors of those values ( ) is zero).

Since both sides of the basic equation (1.3) can be multiplied by some non-zero

number or quantity, we may interpret that the value of property is expressed in

own “physical” units. Perhaps, depending on the nature of the complex network,

some of these units can be determined or discovered, but the pure mathematical

1 Mathematically, the eigenvectors form an orthogonal basis that spans the entire -dimensional
space. Each eigenvector “adds” or speci�es one dimension or one axis (orthogonal to all others)
in that -dimensional coordinate frame.
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1.3 Interpretation and contemplation 5

description (1.3) of the eigenvalue problem does not contain this information. Al-

though the focus here is on eigenvectors, equation (1.4) also provides interesting

information about the eigenvalues, for which we refer to art. 273.

Equation (1.4) re�ects a local property with value ( ) that only depends on

the corresponding values ( ) of direct neighbors. But this local property for node

holds globally for any node , with a same strength or factor . This local

and global aspect of the eigenstructure is another fascinating observation, that is

conserved after “self-replication”. Indeed, using (1.4) with index = into (1.4)

yields

2 ( ) =
X

1=1

1

X

2=1

1 2
( )

2
=
X

2=1

¡
2
¢

2

( )
2

= ( ) +
X

2 is a second hop neighbor of

( )
2

because art. 19 shows that
¡

2
¢

= , where is the degree, i.e. the number of

neighbors, of node . The idea can be continued and a subsequent substitution of

(1.4) leads to an expression that involves a sum over all three hops nodes away from

node . Subsequent iterations relate the expansion of the graph around node in

the number of hops, further elaborated in art. 6 and art. 65, to the eigenvalue

structure as
n

( )
o
( ) =

X

is an -th hop neighbor of

( ) (1.5)

The larger , the more globally the environment around node is extended.

The alternative representation (A.138) of = ,

=
X

=1

shows that there is a hierarchy in importance of the properties, speci�ed by the

absolute value of the eigenvalues, because all eigenvectors are scaled to have equal

unit norm. In particular, possible zero eigenvalues contain properties that the graph

does not possess, because the corresponding eigenvectors do not contribute to the

structure — the adjacency matrix — of the graph. In contrast, the properties

belonging to the largest (in absolute value) eigenvalues have a de�nite and strong

in�uence on the graph structure.

Another observation2 is that the de�nition of the adjacency matrix is somewhat

arbitrary. Indeed, we may agree to assign the value to the existence of a link and

otherwise, where and 6= can be any complex number. Clearly, the graph is

then equally well described by a new adjacency matrix ( ) = ( ) + ,

where is the all-one matrix. Unless = 1 and = 0, the eigenvalues and

eigenvectors of ( ) are di erent from those of . This implies that an entirely

2 Communicated to me by Dajie Liu.
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6 Introduction

di erent, but still consistent theory of the spectra of graphs can be built. We have

not pursued this track here, although we believe that for certain problems a more

appropriate choice of and than = 1 and = 0 may simplify the solution.

Fig. 1.1. A realization of an Erd�os-Rényi random graph ( ) with = 400 nodes,
= 793 links and average degree 2 of about 4. The link density ' 10 2 equals the

probability to have a link between two arbitrary chosen nodes in ( ). The size of a
node is drawn proportional to its degree.

When encountering the subject for the �rst time, one may be wondering where all

the energy is spent, because the problem of �nding the eigenvalues of , reviewed in

Chapter 10, basically boils down to solving the zeros of the associated characteristic

polynomial (art. 235). In addition, we know (art. 1), due to symmetry of , that

all zeros are real (art. 247), a fact that considerably simpli�es matters as shown

in Chapter 11. For, nearly all of the polynomials with real coe cients possess

complex zeros and only a very small subset has zeros that are all real. This suggests

that there must be something special about these eigenvalues and characteristic

polynomials of . Orthogonal polynomials form a fascinating class of polynomials

with real coe cients whose zeros are all real, which are studied in Chapter 12 and

which are related to orthogonal eigenvectors.

Much of the research in the spectral analysis of graphs is devoted to understand

properties of the graph by inspecting the spectra of mainly two matrices, the ad-

jacency matrix and the Laplacian , de�ned in art. 4. For example, how does

the spectrum, the set of all eigenvalues, show that a graph is connected? What

is the physical meaning of the largest and smallest eigenvalue, how large or small

can they be? How are eigenvalues changing when nodes and/or links are added
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1.4 Outline of the book 7

Fig. 1.2. An instance of a Barabási-Albert graph with = 400 nodes and = 780 links,
which is about the same as in Fig. 1.1. The size of a node is drawn proportional to its
degree.

to the graph? Deeper questions are, “Is alone, without in (1.2), su cient to

characterize a graph?”, “How are the spacings, the di erences between consecu-

tive eigenvalues, distributed and what do spacings physically mean?”, or, extremal

problems as “What is the class of graphs on nodes and links that achieves the

largest second smallest eigenvalue of the Laplacian?”, and so on.

1.4 Outline of the book

Chapter 2 introduces some de�nitions and concepts of algebraic graph theory, which

are needed in Part I. We embark on the spectrum in Chapter 3, that focuses on

the eigenvalues of the adjacency matrix . In Chapter 4, we continue with the

investigation of the spectrum of the Laplacian . As argued by Mohar, the theory

of the Laplacian spectrum is richer and contains more beautiful achievements than

that of the adjacency matrix. Mohar’s view is supported by the e ective resistance

matrix in Chapter 5, that is closely related to the Laplacian matrix . In Chapter

6, we compute the entire adjacency spectrum and sometimes also the Laplacian

spectrum of special types of classes containing at least one variable parameter

such as the number of nodes or/and the number of links . Chapter 6 thus

illustrates the theory of Chapter 3 and Chapter 4 by useful examples. In fact,

the book originated from Chapter 6 and it was a goal to collect all spectra of

graphs (with at least one parameter) that can be computed analytically. The

underlying thought was to explain the spectrum of a complex network by features
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8 Introduction

Fig. 1.3. The Watts-Strogatz small-world graph on = 100 nodes and with nodal degree
= 4 (or = 2 as explained in Section 6.2) and rewiring probability = 1

100
.

appearing in “known spectra”. Chapter 7 complements Chapter 6 asymptotically

when graphs grow large, . For large graphs, the density or distribution of

the eigenvalues (as nearly continuous variables) is more appealing and informative

than the long list of eigenvalues. Apart from the three marvelous scaling laws by

Wigner, Mar�cenko-Pastur and McKay, we did not �nd many explicit results on

densities of eigenvalues of graphs. Finally, Chapter 8, the last chapter of Part I,

applies the spectral knowledge of the previous chapters to gain physical insight into

the nature of complex networks.

As mentioned in the Preface (�rst edition), the results derived in Part I have

been built on the general theory of linear algebra and of polynomials with real

coe cients, summarized in Part II and Part III, respectively.

1.5 Classes of graphs

The main classes of graphs in the study of complex networks are: the class of

Erd�os-Rényi random graphs (Fig. 1.1), whose fascinating properties are derived

in Bollobás (2001); the class of Watts-Strogatz small-world graphs (Fig. 1.3) �rst

explored in Watts (1999); the class of Barabási-Albert power law graphs (Fig. 1.2

and Fig. 1.4) introduced by Barabási and Albert (1999); and the regular hyper-

lattices in several dimensions.

The Erd�os-Rényi random graph is the simplest random model for a network. Its

analytic tractability in a wide range of graph problems has resulted in the richest

and most beautiful theory among classes of graphs. In many cases, the Erd�os-Rényi

random graph serves as a basic model that provides a fast benchmark for �rst order

estimates and behaviors in real networks. Usually, if a graph problem cannot be
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1.5 Classes of graphs 9

Fig. 1.4. A Barabási “fractal-like” tree with = 1000 nodes, grown by adding at each
step one new node to nodes already in the tree and proportional to their degree.

solved analytically for the Erd�os-Rényi random graph or for hyper-lattices, little

hope exists that other classes of (random) graphs may have a solution. However,

in particular the degree distribution of complex networks does not match well with

the binomial degree distribution of Erd�os-Rényi random graphs (drawn in Fig. 1.5)

and this observation has spurred the search for “more realistic models”.

After random rewiring of links, the Watts-Strogatz small-world graphs in Section

6.2 possess a relatively high clustering and short hopcount. The probability that

a link is rewired is a powerful tool in Watts-Strogatz small-world graphs to balance

between “long hopcounts” ( is small) and “small-worlds” ( 1).

The most distinguishing property of large Barabási-Albert power law graphs is

the power law degree distribution, Pr [ = ] where3 =
³P 1

=1

´ 1

1
( ) for large , which is observed as a major characteristic in many real-world

complex networks. Fig. 1.5 compares the degree distribution of the Erd�os-Rényi

random graph shown in Fig. 1.1 and of the Barabási-Albert power law graph in

Fig. 1.2, both with the same number of nodes ( = 400) and almost the same

average degree ( [ ] = 4). The insert illustrates the characteristic power law of

the Barabási-Albert graph, recognized by a straight line in a log-log plot. Most

nodes in the Barabási-Albert power law graph have small degree, while a few nodes

have degree larger than 10 (which is the maximum degree in the realization here of

3 The Dirichlet series ( ) =
=1

1 de�nes the Riemann-Zeta function (Titchmarsh and

Heath-Brown, 1986) for complex numbers with Re ( ) 1.
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Fig. 1.5. The probability density function (pdf) of the nodal degree in the Erd�os-Rényi
random graph shown in Fig. 1.1 and in the Barabási-Albert power law graph in Fig. 1.2.

the Erd�os-Rényi random graph with the same number of nodes and links), and even

one node has 36 neighbors. A power law graph is often called a “scale-free graph”,

meaning that there is no typical scale for the degree. Thus, the standard deviation

=
p
Var [ ] is usually larger than the average [ ], such that the latter is not

a good estimate for the random variable of the degree, in contrast to Gaussian

or binomial distributions, where the bell-shape is centered around the mean with,

usually, small variance. Physically, power law behavior can be explained by the

notion of long-range dependence, heavy correlations over large spacial or temporal

intervals and of self-similarity. A property is self-similar if on various scales in time

or space or aggregation levels (e.g., hierarchical structuring of nodes in a network)

about the same behavior is observed. The result is that a local property is magni�ed

or scaled-up towards a global extent. Mathematically, if Pr [ = ] = ,

then Pr
£

1 =
¤
= Pr [ = ]: scaling a property — here, the degree — by

a factor 1 leads to precisely the same distribution, apart from a proportionality

constant . Thus, on di erent scales, the behavior “looks” similar.

There is also a large number of more dedicated classes, such as Ramanujan

graphs and the Kautz graphs, shown in Fig. 1.6, that possess interesting extremal

properties. We will not further elaborate on the di erent properties of these classes;

we have merely included some of them here to illustrate that complex networks are

studied by comparing observed characteristics to those of “classes of graphs with

known properties”.
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Fig. 1.6. The Kautz graph of degree = 3 and of dimension = 3 has ( + 1) nodes and
( + 1) +1 links. The Kautz graph has the smallest diameter of any, possibly directed,
graph with nodes and degree .

1.6 Outlook

I believe that we still do not understand “networks” su ciently well. For example,

if the adjacency matrix of a large graph is given, it seems quite complex to tell

without visualization of the graph by computing graph metrics only, what the

properties of the network are. A large number of topological metrics may be listed

such as hopcount, eccentricity, diameter, girth, expansion, betweenness, distortion,

degree, assortativity, coreness, clique number, clustering coe cient, vertex and edge

connectivity and others. We humans see a pile of numbers, but often miss the overall

picture and understanding.

The spectrum, that is for a su ciently large graph a unique �ngerprint as con-

jectured in van Dam and Haemers (2003), may reveal much more. First, graph

or topology metrics are generally correlated and dependent. In contrast, eigen-

values weigh the importance of eigenvectors, that are all orthogonal, which makes

the spectrum a more desirable device. Second, earlier research on photolumines-

cence spectra (Borghs et al., 1989) provided useful and precise information about

the structural properties of doped GaAs substrates. By inspecting carefully the

di erences in peaks and valleys, in gaps and in the broadness of the distribution

of eigenvalues, that physically represented energy levels in the solid described by

Schrödinger’s equation in Section 1.3, insight gradually arose. A similar track may

be followed to understand real-world networks. We hope that the mathematical

properties of spectra, presented here, may help in achieving this goal.
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