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Chapter 1

Basic Deonitions and Concepts
fromMetric Spaces

In this chapter, we gather some basic deonitions, concepts, and results from metric spaces which

are required throughout the book. For detail study of metric spaces, we refer to [8, 46, 61, 95, 110,

150, 154].

1.1 Deonitions and Examples

Deonition 1.1 Let X be a nonempty set. A real-valued function d 6 X × X ³ = is said to be a

metric on X if it satisoes the following conditions:

(M1) d(x, y) g 0 for all x, y * X;

(M2) d(x, y) = 0 if and only if x = y for all x, y * X;

(M3) d(x, y) = d(y, x) for all x, y * X; (symmetry)

(M4) d(x, y) f d(x, z) + d(z, y) for all x, y, z * X. (triangle inequality)

The set X together with a metric d on X is called a metric space and it is denoted by (X, d). If there
is no confusion likely to occur we, sometime, denote the metric space (X, d) by X.
Example 1.1 Let X be a nonempty set. For any x, y * X, deone

d(x, y) = { 0, if x = y,
1, if x b y.

Then d is a metric, and it is called a discrete metric. The space (X, d) is called a discrete metric space.
The above example shows that on each nonempty set, at least one metric that is a discrete metric

can be deoned.

Example 1.2 LetX = =n, the set of ordered n-tuples of real numbers. For any x = (x1, x2, & , xn) *
X and y = (y1, y2, & , yn) * X, we deone

(a) d1(x, y) = n3
i=1

||xi 2 yi||, (called taxicab metric)
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2 Fixed Point Theory and Variational Principles in Metric Spaces

(b) d2(x, y) = ( n3
i=1

(xi 2 yi)2)
1

2

, (called usual metric)

(c) dp(x, y) = ( n3
i=1

||xi 2 yi||p)
1

p , p g 1

(d) d>(x, y) = max
1fifn ||xi 2 yi||. (called max metric)

Then, d1, d2, dp (p g 1), d> are metrics on =n.

Example 1.3 Let 3> be the space of all bounded sequences of real or complex numbers, that is,

3> = {{xn} ¢ = or # 6 sup
1fn<> ||xn|| < >} .

Then,

d>(x, y) = sup
1fn<> ||xn 2 yn|| , for all x = {xn} , y = {yn} * 3>,

is a metric on 3> and (3>, d>) is a metric space.

Example 1.4 Let s be the space of all sequences of real or complex numbers, that is,

s = {{xn} ¢ = or #} .
Then,

d(x, y) = >3
n=1

1

2n

||xn 2 yn||
1 + ||xn 2 yn|| , for all x = {xn} , y = {yn} * s,

is a metric on s.

Example 1.5 Let 3p, 1 f p < >, denote the space of all sequences {xn} of real or complex numbers

such that

>3
n=1

||xn||p < >, that is,

3p = {{xn} ¢ = or # 6 >3
n=1

||xn||p < >} , for 1 f p < >.
Then,

d(x, y) = ( >3
n=1

||xn 2 yn||p)
1

p , for all x = {xn} , y = {yn} * 3p,
is a metric on 3p and (3p, d) is a metric space.

Example 1.6 Let B[a, b] be the space of all bounded real-valued functions deoned on [a, b], that is,
B[a, b] = {f 6 [a, b] ³ = 6 | f(t)| f k for all t * [a, b] and for some constant k * =} .
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Basic Deonitions and Concepts fromMetric Spaces 3

Then,

d( f, g) = sup
t*[a,b] || f(t) 2 g(t)|| , for all f, g * B[a, b],

is a metric on B[a, b].
Example 1.7 Let C[a, b] be the space of all continuous real-valued functions deoned on [a, b]. For
any f, g * C[a, b], we deone the real-valued functions d> and d1 on C[a, b] × C[a, b] as follows:

d>( f, g) = sup
t*[a,b] || f(t) 2 g(t)||

and

d1( f, g) = +b

a

|| f(t) 2 g(t)|| dt,
where the integral is the Riemann integral which is possible because the functions f and g are

continuous on [a, b]. Then, d> and d1 are metrics on C[a, b].
Deonition 1.2 Let X be a nonempty set. A real-valued function d 6 X × X ³ = is said to be a

pseudometric on X if it satisoes the following conditions:

(PM1) d(x, y) g 0 for all x, y * X;

(PM2) d(x, y) = 0 if x = y for all x, y * X;

(PM3) d(x, y) = d(y, x) for all x, y * X; (symmetry)

(PM4) d(x, y) f d(x, z) + d(z, y) for all x, y, z * X. (triangle inequality)

The set X together with a pseudometric d on X is called a pseudometric space.

Example 1.8 Let X = =2 and d(x, y) = |x1 2 y1| for all x = (x1, x2), y = (y1, y2) * X. Then, d

is not a metric on X; however, it is a pseudometric on X. Indeed, for x = (0, 0), y = (0, 1) * X, we

have d(x, y) = 0 but x b y. Therefore, it is not a metric on X. It can be easily checked that d satisoes

the conditions (PM1) 3 (PM4).

Deonition 1.3 Let X be a nonempty set. A real-valued function d 6 X × X ³ = is said to be a

quasimetric on X if it satisoes the following conditions:

(QM1) d(x, y) g 0 for all x, y * X;

(QM2) d(x, y) = 0 if and only if x = y for all x, y * X;

(QM3) d(x, y) f d(x, z) + d(z, y) for all x, y, z * X. (triangle inequality)

The set X together with a quasimetric d on X is called a quasimetric space.

Example 1.9 The real-valued functions d1, d2 6 = × = ³ = deoned by

d1(x, y) = { y 2 x, if y g x,
ÿ(x 2 y), if y < x,

for ÿ > 0, and

d2(x, y) = { ey 2 ex, if y g x,
e2y 2 x2x, if y < x,

are quasimetrics on =.
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4 Fixed Point Theory and Variational Principles in Metric Spaces

Deonition 1.4 Let (X, d) be a metric space and let A and B be nonempty subsets of X. The distance

between the sets A and B is given by

d(A,B) = inf {d(x, y) 6 x * A, y * B} .
Since d(x, y) = d(y, x), we have d(A,B) = d(B,A).

If A is a singleton set {x}, then
d({x},B) = inf {d(x, y) 6 y * B} .

It is called the distance of a point x * X from the set B, and we write d(x,B) in place of d({x},B).
Remark 1.1 (a) The equation d(x,B) = 0 does not imply that x belongs to B.

(b) If d(A,B) = 0, then it is not necessary that A and B have common points.

Example 1.10 Let A = {x * = 6 x > 0} and B = {x * = 6 x < 0} be subsets of = with the usual

metric. Then d(A,B) = 0, but A and B have no common point. If x = 0, then d(x,B) = 0; but x + B.

Deonition 1.5 Let (X, d) be a metric space and A be a nonempty subset of X. The diameter of A,

denoted by diam(A), is given by
diam(A) = sup {d(x, y) 6 x, y * A} .

The set A is called bounded if there exists a constant k such that diam(A) f k < >. In other words,

A is bounded if its diameter is onite, otherwise it is called unbounded.

In particular, the metric space (X, d) is bounded if the set X is bounded.

1.2 Open Sets and Closed Sets

Deonition 1.6 Let (X, d) be a metric space. Given a point x0 * X and a real number r > 0, the sets

Sr(x0) = {y * X 6 d(x0, y) < r}
and

Sr[x0] = {y * X 6 d(x0, y) f r}
are called open sphere (or open ball) and closed sphere (or closed ball), respectively, with center at

x0 and radius r.

Remark 1.2 (a) The open and closed spheres are always nonempty, since x0 * Sr(x0) ¦ Sr[x0].
(b) Every open (respectively, closed) sphere in = with the usual metric is an open (respectively,

closed) interval. But the converse is not true; for example, (2>,>) is an open interval in= but

not an open sphere.

Deonition 1.7 Let A be a nonempty subset of a metric space X.

(a) A point x * A is said to be an interior point of A if x is the center of some open sphere contained

in A. In other words, x * A is an interior point of A if there exists r > 0 such that Sr(x) ¦ A.
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Basic Deonitions and Concepts fromMetric Spaces 5

(b) The set of all interior points of A is called interior of A and it is denoted by A:, that is,
A: = {x * A 6 Sr (x) ¦ A for some r > 0} .

(c) The set A is said to be open if each of its points is the center of some open sphere contained

entirely in A; that is, A is an open set if for each x * A, there exists r > 0 such that Sr(x) ¦ A.

(d) Let x * X. The set A is said to be a neighborhood of x if there exists an open sphere centered at

x and contained in A, that is, if Sr(x) ¦ A for some r > 0. In case A is an open set, it is called an

open neighborhood of x.

Remark 1.3 In a metric space, we have the following:

(a) An open sphere Sr(x) with center at x and radius r is a neighborhood of x.
(b) The interior of A is the neighborhood of each of its points.

(c) Every open set is the neighborhood of each of its points.

(d) The set A is open if and only if each of its points is an interior point, that is, A = A:.
(e) Arbitrary union of open sets is open.

(f) Finite intersection of open sets is open.

(g) Arbitrary intersection of open sets need not be open.

Theorem 1.1 Let A and B be two subsets of a metric space X. Then,

(a) A ¦ B implies A: ¦ B:;
(b) (A + B): = A: + B:;
(c) (A * B): § A: * B:.
Deonition 1.8 Let A be a subset of a metric space X. A point x * X is said to be a limit point

(accumulation point or cluster point) of A if each open sphere centered at x contains at least one

point of A other than x.

In other words, x * X is a limit point of A if

(Sr(x) 2 {x}) + A b ', for all r > 0.
The set of all limit points of A is called derived set and it is denoted by A2.
Deonition 1.9 A point x * X is said to be an isolated point of A if there exists an open sphere

centered at xwhich contains no point of A other than x itself, that is, if Sr(x)+A = {x} for some r > 0.

Remark 1.4 If a point x * X is not a limit point of A, then it is an isolated point. Hence every point

of a metric space X is either a limit point or an isolated point of X.

Example 1.11 Consider the metric space X = {0, 1, 1
2
, 1
3
, 1
4
,ï} with the usual metric given by the

absolute value. Then, 0 is the only limit point of X while all other points are the isolated points of X.

Deonition 1.10 Let A be a subset of a metric space X. The closure of A, denoted by A or clA, is

the union of A and the set of all limit points of A, that is, A = A * A2.
In other words, x * A if every open sphere Sr(x) centered at x and radius r > 0 contains a point

of A, that is, x * A if and only if Sr(x) + A b ' for every r > 0.
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6 Fixed Point Theory and Variational Principles in Metric Spaces

Remark 1.5 Let A and B be subsets of a metric space X. Then,

(a) ' = ';

(b) X = X;

(c) (A) = A;

(d) A ¦ B implies A ¦ B;

(e) A * B = A * B;
(f) A = (A)2;
(g) A + B ¦ A + B, but A + B « A + B.
Theorem 1.2 Let (X, d) be a metric space and A be a subset of X. Then, x * A if and only if

d(x,A) = 0.

Deonition 1.11 Let A be a subset of a metric space X. The set A is said to be closed if it contains

all its limit points, that is, A2 ¦ A.

Remark 1.6 (a) LetA be a subset of ametric spaceX. Then clearlyA is closed if and only ifA = A.

(b) Let A be a subset of a metric space X. Then A is closed if and only if the complement of A is an

open set.

(c) In a metric space, every onite set, empty set, and whole space are closed sets.

(d) Arbitrary intersection of closed sets is closed.

(e) Finite union of closed sets is closed. However, arbitrary union of closed sets need not be closed.

Deonition 1.12 Let A be a subset of a metric space X. A point x * X is called a boundary point

of A if it is neither an interior point of A nor of X ý A, that is, x + A: and x + (X ý A):.
In other words, x * X is a boundary point of A if every open sphere centered at x intersects both

A and X ý A.
The set of all boundary points of A is called the boundary of A and it is denoted by bd(A).

Remark 1.7 It is clear that bd(A) = A + (X ý A) = A + Ac.
1.3 Complete Metric Spaces

Deonition 1.13 Let (X, d) be ametric space. A sequence {xn} of points of X is said to be convergent

if there is a point x * X such that for each ÿ > 0, there exists a positive integer N such that

d(xn, x) < ÿ, for all n > N.
The point x * X is called a limit point of the sequence {xn}.

More preciously, a sequence {xn} in a metric space X converges to a point x * X if the sequence{d(xn, x)} of real numbers converges to 0.

Since d(xn, x) < ÿ is equivalent to xn * Sÿ(x), the deonition of convergent sequence can be

restated as follows:
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A sequence {xn} in a metric space X converges to a point x * X if and only if for each ÿ > 0,

there exists a positive integer N such that

xn * Sÿ(x), for all n > N.
For a convergent sequence {xn} to x, we use the following symbols:

xn ³ x or lim
n³> xn = x

and we express it by saying that xn approaches x or that xn converges to x.

Deonition 1.14 A sequence {xn} in a metric space X is said to be bounded if the range set of the

sequence is bounded.

Remark 1.8 In a metric space, every convergent sequence is bounded.

Deonition 1.15 Let (X, d) be a metric space. A sequence {xn} in X is said to be a Cauchy sequence

if for each ÿ > 0, there exists a positive integer N such that

d(xn, xm) < ÿ, for all n,m > N.
Theorem 1.3 Every convergent sequence in a metric space is a Cauchy sequence.

Exercise 1.1 Let (X, d) be a metric space and {xn} be a sequence in X such that d(xn, xn+1) < 1

2n

for all n. Prove that {xn} is a Cauchy sequence.
Proof Let ÿ > 0 and choose a positive integerN such that

1

2N21 < ÿ. Then for all n > m > N, we have

d(xm, xn) f d(xm, xm+1) + d(xm+1, xm+2) +ï+ d(xn21, xn)< 1

2m
+ 1

2m+1
+ï+ 1

2n21

< >3
k=m

1

2k
= 1

2m21
< 1

2N21
< ÿ.

Deonition 1.16 A metric space (X, d) is said to be complete if every Cauchy sequence in X

converges to a point in X.

Example 1.12 The space=n with respect to all the metrics given in Example 1.2 is complete. The

space C[0, 1] with respect to the metric d1 given in Example 1.7 is not complete.

Remark 1.9 A metric space (X, d) is complete if and only if every Cauchy sequence in X has a

convergent subsequence.

Exercise 1.2 Let (X, dX) and (Y, dY) be metric spaces. Deone

dX×Y((x, y), (u, v)) = dX(x, u) + dY(y, v), for all (x, y), (u, v) * X × Y.
Prove that dX×Y is a metric on X × Y. Further, if (X, dX) and (Y, dY) are complete, then prove that(X × Y, dX×Y) is also complete.
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8 Fixed Point Theory and Variational Principles in Metric Spaces

Theorem 1.4 (Cantor9s Intersection Theorem) Let (X, d) be a complete metric space and {An} be
a decreasing sequence (that is, An+1 ¦ An) of nonempty closed subsets of X such that diam(An) ³ 0

as n³>. Then, the intersection
>â
n=1

An contains exactly one point.

The converse of the above theorem is the following:

Theorem 1.5 Let (X, d) be a metric space. If any decreasing sequence {An} of nonempty closed sets
in X with diam(An) ³ 0 as n³> has exactly one point in its intersection, then (X, d) is complete.
Deonition 1.17 A nonempty subset A of a metric space X is said to be dense (or everywhere dense)

in X if A = X, that is, if every point of X is either a point or a limit point of A.

In other words, a set A is dense in X if for any given point x * X, there exists a sequence of

points of A that converges to x.

It can be easily seen that a subset A of X is dense if and only if Ac has empty interior.

Before giving the examples of dense sets, we provide the criteria for being dense.

Theorem 1.6 Let A be a nonempty subset of a metric space X. The following statements are

equivalent:

(a) For every x * X, d(x,A) = 0.

(b) A = X.

(c) A has nonempty intersection with every nonempty open subset of X.

Example 1.13 (a) The set of all rational numbers ; is dense in the usual metric space = since; = =.
(b) Since = ý ; = =, the set of all irrational numbers = ý ; is dense in the usual metric space =.
(c) The set A = {a + ib * # 6 a, b * ;} is dense in # since A = #.
(d) The set ;n = ; ×; ×ï×;ÿ····ÿ····ÿ

n-times

is dense in =n with the usual metric.

(e) The set

A = {x = (a1, a2, & , an, 0, 0, &) 6 ai * ; for all 1 f i f n and n * 5}
is dense in the space 3p, 1 f p < >, with the following metric:

dp(x, y) = ( >3
i=1

|xi 2 yi|p)
1/p ,

where x = {x1, x2, &} and y = {y1, y2, &} in 3p.
(f) The set P[a, b] of all polynomials deoned on [a, b] with rational coefocients is dense in C[a, b].
(g) Let (X, d) be a discrete metric space. Since every subset of X is closed, the only dense subset of

X is itself.

Deonition 1.18 Ametric space X is said to be separable if there exists a countable dense set in X.

A metric space which is not separable is called inseparable.
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Example 1.14 (a) The usual metric space = is separable since the set of all rational numbers ;
is dense in =.

(b) The usual metric space # is separable since the set A = {a + ib * # 6 a, b * ;} is dense in #.
(c) The Euclidean space=n is separable since the set;n = ; ×; ×ï×;ÿ····ÿ····ÿ

n-times

is countable and dense

in =n.

(d) The space 3p, 1 f p < >, is separable as the set

A = {x = (a1, a2, & , an, 0, 0, &) 6 ai * ;, 1 f i f n and for all n * 5}
is countable and dense in the space 3p.

(e) The space C[a, b] is separable since the set P[a, b] of all polynomials deoned on [a, b] with
rational coefocients is countable and dense in C[a, b].

(f) A discrete metric space X is separable if and only if the set X is countable.

Example 1.15 The space 3> of all bounded sequences of real or complex numbers with the metric

d>(x, y) = sup
1fn<> |xn 2 yn|,

where x = {xn} and y = {yn} in 3>, is not separable.

Deonition 1.19 Two metrics d1 and d2 on the same underlying set X are said to be equivalent if

for every sequence {xn} in X and x * X,

lim
n³> d1(xn, x) = 0 if and only if lim

n³> d2(xn, x) = 0,
that is, a sequence converges to x with respect to the metric d1 if and only if it converges to x with

respect to the metric d2.

The metric spaces (X, d1) and (X, d2) are said to be equivalent if the metrics d1 and d2 are

equivalent.

Remark 1.10 If two metrics are equivalent, then the families of open sets are same in (X, d1) and(X, d2).
The following result provides a sufocient condition for two metrics on a set to be equivalent.

Theorem 1.7 Two metrics d1 and d2 on a nonempty set X are equivalent if there exist constants

k1, k2 > 0 such that

k1d2(x, y) f d1(x, y) f k2d2(x, y), for all x, y * X. (1.1)

1.4 Compact Spaces

Deonition 1.20 Let X be a metric space and � be any index set.

(a) A collection F = {Gÿ}ÿ*� of subsets of X is called a cover of X if ãÿ*�Gÿ = X, that is,

every element of X belongs to at least one member of F . If each member of F is an open set

in X, then it is called an open cover of X.
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10 Fixed Point Theory and Variational Principles in Metric Spaces

(b) A subcollection C of a cover F of X is called a subcover if C is itself a cover of X. C is called

a onite subcover if it consists only a onite number of members.

In other words, if there exist Gÿ1
,Gÿ2

, & ,Gÿn * F such that ãn

k=1
Gÿk = X, then the

subcollection C = {Gÿ1
,Gÿ2

, & ,Gÿn } is called a onite subcover of X.

In this case, F is said to be reducible to a onite cover or contains a onite subcover.

Deonition 1.21 Let X be a metric space and Y be a subset of X. A collection F = {Gÿ}ÿ*� of

subsets of X is said to be a cover of Y if Y ¦ ãÿ*� Gÿ.
Deonition 1.22 A metric space X is said to be compact if every open cover of X has a onite

subcover.

A nonempty subset Y of a metric space (X, d) is compact if it is a compact metric space with the

metric induced on it by d.

Theorem 1.8 Every closed subset of a compact metric space is compact.

Deonition 1.23 A collection ÿ = {C1,C2, &} of subsets of a metric space X is said to have the

onite intersection property if every onite subcollection of ÿ has nonempty intersection, that is, for

every onite collection {C1,C2, & ,Cn} of ÿ, we haveân

i=1
Ci b '.

Theorem 1.9 A metric space X is compact if and only if every collection of closed sets in X having

onite intersection property has nonempty intersection.

Deonition 1.24 Ametric space X is said to have the Bolzano3Weierstrass property if every inonite

subset of X has a limit point.

Deonition 1.25 A metric space X is said to be sequentially compact if every sequence in X has a

convergent subsequence.

A subset A of a metric space X is said to be sequentially compact if every sequence in A contains

a subsequence which converges to a point in A.

It is well known that

compactnessõ Bolzano3Weierstrass propertyõ sequentially compactness

Deonition 1.26 Let (X, d) be a metric space and ÿ > 0 be given. A subset A of X is called an ÿ-net
if A is onite and X = ã

x*A Sÿ(x), that is, if A is onite and its points are scattered through X in such

a way that each point of X is distant by less than ÿ from at least one point of A.

In other words, a onite subset A = {x1, x2, & , xn} of X is an ÿ-net for X if for every point y * X,

there exists an xi0 * A such that d (y, xi0) < ÿ.
Example 1.16 Let X = {(x, y) * = × = 6 x2 + y2 < 4}, that is, X is the open sphere centered at

the origin and radius 2. If ÿ = 3

2
, then the set

A = {(1, 21), (1, 0), (1, 1), (0, 21), (0, 0), (0, 1), (21, 21), (21, 0), (21, 1)}
is an ÿ-net for X.

On the other hand, if ÿ = 1/2, then A is not an ÿ-net for X. For example, the point y = ( 1
2
, 1
2
)

belongs to X but the distance between y and any point in A is greater than
1

2
.
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