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Preface

Given a Lie group G acting on a space X, the equivariant cohomology

ring H∗

G
X packages information about the interaction between the to-

pology of X and the representation theory of G. On the one hand, it

provides a way of exploiting the symmetry of X, as manifested by the

G-action, to understand H∗X; on the other hand, appropriate choices

of X are useful in studying representations of G.

Defined by A. Borel in his 1958–9 seminar on transformation groups,

equivariant cohomology arose in the context of a problem of interest to

topologists: Given some cohomological information about X, what can

be said about the group actions X admits? Must there be fixed points?

How many? By constructing an auxiliary space, Borel built a framework

for answering these questions in special situations, for example, when G

is a torus and X is a compact manifold satisfying a technical hypothesis

(now known as equivariant formality).

It took several decades for ideas of equivariant cohomology to enter

mainstream algebraic geometry. By 2000, though, localization had be-

come a standard technique in Gromov–Witten theory and applications to

enumerative geometry. Equivariant methods were also used in producing

degeneracy locus formulas and in proving Littlewood–Richardson rules

in Schubert calculus.

One reason for the lag may be the role of infinite-dimensional spaces.

Indeed, Borel’s construction produces a certain fiber bundle over the

classifying space BG, with fiber X. Classifying spaces are almost al-

ways infinite-dimensional, so they are certainly not algebraic varieties.

xi
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xii Preface

However, for the groups appearing most frequently in applications to al-

gebraic geometry—linear algebraic groups, and especially torus groups—

these spaces can be “approximated” by familiar finite-dimensional

varieties. Such approximation spaces were introduced by Totaro in the

late 1990s, building on ideas of Bogomolov, and they were incorporated

into a theory of equivariant Chow groups by Edidin and Graham. The

same ideas work equally well for cohomology, and in fact, some of the

foundational notions are simpler for cohomology than for Chow groups.

Our aim in this text is to introduce the main ideas of equivariant coho-

mology to an audience with a general background in algebraic geometry.

We therefore avoid using infinite-dimensional spaces in any essential way,

relying instead on finite-dimensional approximations. A recurring theme

is that studying the equivariant geometry of X is essentially the same

as studying fiber bundles with fiber X. The fiber bundle point of view

has a long tradition in algebraic geometry, and by emphasizing this, we

hope that newcomers to equivariant cohomology will find that many of

the constructions are already familiar.

In our choice of topics, we were guided by a desire to keep prereq-

uisites minimal. Apart from a “Leray–Hirsch”-type lemma, and a few

basic facts about Chern classes and cohomology classes of subvarieties,

all that we need is standard material from first courses in algebraic to-

pology and algebraic geometry. Projective spaces and Grassmannians

are usually familiar to beginners, and they suffice to illustrate a broad

range of equivariant phenomena. Toric varieties and homogeneous spaces

are natural next steps, and here one already encounters the frontiers of

current research.

On the other hand, this introductory text is not an all-inclusive ref-

erence, and we have left out many exciting topics, inevitably including

ones which some researchers (even ourselves!) might consider essential.

Readers will have to look elsewhere for the construction of equivari-

ant cohomology via differential forms, for a detailed discussion of the

moment map and the symplectic point of view, for applications to the

cohomology of finite or discrete groups, and for equivariant K-theory and

more exotic cohomology theories. Part of our aim is to prepare and en-

courage readers to explore the many excellent sources for learning about

such things.
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Preface xiii

The book grew out of lectures, and we have tried to blend some of the

organic character of a lecture series with the logical organization of a

textbook. The first six chapters cover the basics, including a simple ver-

sion of the localization theorem and an illustration of its application to

the space of conics. This material is important for most users of equivari-

ant cohomology. Refinements of the localization theorem, including the

“GKM” description of equivariant cohomology, are given in Chapter 7.

Here we employ some more technical arguments, and for the most part

the results are not logically required elsewhere in the book.

The remainder of the text consists of examples and applications—to

toric varieties, Grassmannians, flag varieties, and general homogeneous

spaces.

Grassmannians and flag varieties are fascinating objects of study in

their own right, and we give an account of their combinatorial structure

and equivariant geometry in Chapters 9 and 10. These spaces also form

part of the link between equivariant cohomology and degeneracy locus

formulas: in a precise way, a formula for the cohomology class of a de-

generacy locus is equivalent to one for the equivariant class of a certain

Schubert variety. This connection motivated much of our perspective,

and it is the subject of Chapter 11.

Projective spaces, Grassmannians, and flag varieties are examples of

homogeneous spaces for the general linear group. Other classical groups

—the symplectic and orthogonal groups—appear in a similar way, and

their corresponding flag varieties are related to refined degeneracy locus

problems. The problem of extending what is known for GLn (“type A”)

to the other classical types has received much attention over the past

few decades. For a complete telling of this story, putting all classical

groups on equal footing, we must refer elsewhere. Chapters 13 and 14

provide a sample, describing the equivariant cohomology of symplectic

flag varieties (“type C”).

The type C degeneracy locus formulas require a new coefficient ring,

and this raises a question: Where is the analogous coefficient ring in

type A? The answer has become clear only in very recent work, involv-

ing a certain infinite-dimensional Grassmannian. (As usual, and in keep-

ing with our general theme, it can also be understood via appropriate
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xiv Preface

finite-dimensional approximations.) To provide a bridge between type A

and type C, this is discussed rather briefly in Chapter 12.

Once one understands something about flag varieties for symplectic

and orthogonal groups, it is natural to ask about general homogeneous

spaces. These spaces play a key role in the story of equivariant coho-

mology, too: thanks to a theorem of Borel, if G is a reductive group

with Borel subgroup B and maximal torus T , then the G-equivariant

cohomology of any space on which G acts is related to its T -equivariant

cohomology through the flag variety G/B. This is explained in Chap-

ter 15, and further developed in Chapter 16.

There are several possible approaches to defining equivariant homol-

ogy. One which is well suited to our theme of finite-dimensional approx-

imation is presented in Chapter 17, based on ideas of Edidin, Graham,

and Totaro. Equivariant Segre classes appear naturally in this context,

as do the equivariant multiplicities introduced by Rossmann and Brion.

In Chapters 18 and 19, we conclude with a study of Schubert varieties

in homogeneous spaces. Highlights include a formula for the restriction

of a Schubert class to a fixed point (due to Andersen, Jantzen, Soergel,

and Billey), a criterion for a Schubert variety to be nonsingular at a

fixed point (following Kumar and Brion), and some formulas for mul-

tiplying equivariant Schubert classes, along with a theorem of Graham

which asserts that such products always expand positively, in a suitable

sense.

Each chapter ends with a “Notes” section, providing some limited his-

torical and mathematical context, as well as references for material in

the text. We have also included hints for many of the exercises, and

complete solutions in a few cases.

Appendix A is a brief summary of basic results from algebraic topol-

ogy which we need in the text. Much of this material is essential, and we

advise the reader to review it before embarking on the main text. The

other appendices may be perused as needed.

Early drafts of what became this book began with WF’s Eilenberg Lec-

tures at Columbia University in 2007, and DA’s notes have been available

online since then. In the meantime, both authors have given lectures aug-

menting and improving on these notes—in courses at the University of

Michigan, the University of Washington, and the Ohio State University,
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Preface xv

and in lecture series at the Institute for Advanced Study in Princeton in

2007, at IMPANGA in Bedłewo in 2010, and at IMPA in Rio de Janeiro

in 2014. We heartily thank the many students, friends, and colleagues

who attended these lectures and gave feedback on the notes. Special

thanks go to P. Achinger, I. Cavey, J. de Jong, D. Genlik, O. Lorscheid,

D. Speyer, and A. Zinger for their helpful comments, and most especially

to M. Franz for his careful reading of an earlier draft. Finally, we thank

M. Brion, D. Edidin, W. Graham, and B. Totaro for their influence on

our understanding of the subject.
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