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“This book dismantles the final, most daunting barriers to learning about

moduli of higher dimensional varieties, from the point of view of the Mini-

mal Model Program. The first chapter draws the reader in with a compelling

history; a discussion of the main ideas; a visitor’s trail through the subject,

complete with guardrails around the most dangerous traps; and a rundown of

the issues that one must overcome. The text that follows is the outcome of

Kollár’s monumental three-decades-long effort, with the final stones laid just

in the last few years.”

— Dan Abramovich, Brown University

“This is a fantastic book from János Kollár, one of the godfathers of the com-

pact moduli theory of higher dimensional varieties. The book contains the

definition of the moduli functor, the prerequisites required for the definition,

and also the proof of the existence of the projective coarse moduli space. This is

a stunning achievement, completing the story of 35 years of research. I expect

this to become the main reference book, and also the principal place to learn

about the theory for graduate students and others interested.”

— Zsolt Patakfalvi, EPFL

“This excellent book provides a wealth of examples and technical details for

those studying birational geometry and moduli spaces. It completely addresses

several state-of-the-art topics in the field, including different stability notions,

K-flatness, and subtleties in defining families of stable pairs over an arbitrary

base. It will be an essential resource for both those first learning the subject

and experts as it moves through history and examples before settling many of

the (previously unknown) technicalities needed to define the correct moduli

functor.”

— Kristin DeVleming, University of Massachusetts Amherst
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Preface

The aim of this book is to generalize the moduli theory of algebraic

curves – developed by Riemann, Cayley, Klein, Teichmüller, Deligne, and

Mumford – to higher dimensional algebraic varieties.

Starting with the theory of algebraic surfaces worked out by Castelnuovo,

Enriques, Severi, Kodaira, and ending with Mori’s program, it became clear

that the correct higher dimensional analog of a smooth projective curve of

genus ≥ 2 is a smooth projective variety with ample canonical class. We

establish a moduli theory for these objects, their limits, and generalizations.

The first attempt to write a book on higher dimensional moduli theory was

the 1993 Summer School in Salt Lake City, Utah. Some notes were written, but

it soon became evident that, while the general aims of a theory were clear, most

of the theorems were open and even many of the basic definitions unsettled.

The project was taken up again at an AIM conference in 2004, which

eventually resulted in solving the moduli-theoretic problems related to singu-

larities; these were written up in Kollár (2013b). After 30 years, we now have

a complete theory, the result of the work of numerous people.

While much of the early work focused on the construction of moduli spaces,

later developments in the theory of stacks emphasized families. We also follow

this approach and spend most of the time understanding families. Once this

is done at the right level, the existence of moduli spaces becomes a natural

consequence.

xi
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Notation

We follow the notation and conventions of Hartshorne (1977); Kollár and Mori

(1998) and Kollár (2013b). Our schemes are Noetherian and separated. At the

beginning of each chapter we state further assumptions. Many of the results

should work over excellent base schemes, but most of the current proofs apply

only in characteristic 0.

A variety is usually an integral scheme of finite type over a field. However,

following standard usage, a stable variety or a locally stable variety is reduced,

pure dimensional, but possibly reducible.

Affine n-space over a field k is denoted by An
k
, or by An(x1, . . . , xn) or An

x

if we emphasize that the coordinates are x1, . . . , xn. Same conventions for

projective n-space Pn.

The canonical class of X is denoted by KX , and the canonical sheaf or

dualizing sheaf by ωX; see (1.23) for varieties and (11.2) for schemes. Since

OX(KX) ≃ ωX , we switch between the divisor and sheaf versions whenever it

is convenient. Here KX is more frequently used on normal varieties, and ωX in

more general settings. Functorial properties work better for ωX .

A smooth proper variety X is of general type if |mKX | defines a birational

map for m ≫ 1, see (1.30). The Kodaira dimension of X, denoted by κ(X), is

the dimension of the image of |mKX | for m sufficiently large and divisible.

Notation Commonly Used in Birational Geometry

A map or rational map is defined on a dense set; it is denoted by d. A mor-

phism is everywhere defined; it is denoted by →. A contraction is a proper

morphism g : X → Y such that g∗OX = OY .

A map g : X d Y between (possibly reducible) schemes is birational if there

are nowhere dense closed subsets ZX ⊂ X and ZY ⊂ Y such that g restricts to

xiv
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Notation xv

an isomorphism (X \ ZX) ≃ (Y \ ZY ). The smallest such ZX is the exceptional

set of g, denoted by Ex(g). A birational map g : X d Y is small if Ex(g) has

codimension ≥ 2 in X.

A resolution of X is a proper, birational morphism p : X′ → X, where X′ is

nonsingular. X has rational singularities if p∗OX′ = OX and Ri p∗OX′ = 0 for

i > 0; see Kollár and Mori (1998, Sec.5.1). Rational implies Cohen–Macaulay,

abbreviated as CM; see (10.4).

Let g : X d Y be a birational map defined on the open set X◦ ⊂ X. For a

subscheme W ⊂ X, the closure of g(W ∩ X◦) ⊂ Y is the birational transform,

provided W ∩ X◦ is dense in W. It is denoted by g∗(W)

Following the confusion established in the literature, a divisor on X is either

a prime divisor or a Weil divisor; the context usually makes it clear which one.

We use divisor over X to mean a prime divisor on some π : X′ → X that is

birational to X. The center of E on X, denoted by centerX E, is (the closure of)

π(E) ⊂ X.

A Z-, Q- or R-divisor (more precisely, Weil Z-, Q- or R-divisor) is a finite

linear combinations of prime divisors
∑

aiDi, where ai ∈ Z, Q or R. A divisor

is reduced if ai = 1 for every i. See Section 4.3 for various versions of divisors

(Weil, Cartier, etc.).

A Z- or Q-divisor D on a normal variety is Q-Cartier if mD is Cartier for

some m > 0. (See (11.43) for the R version.) The smallest m ∈ N such that

mD is Cartier is called the Cartier index or simply index of D. On a nonnormal

variety Y these notions make sense if Y is nonsingular at the generic points of

Supp D; we call these Mumford divisors, see (4.16.4) and Section 4.8.

The index of a variety Y , denoted by index(Y), is the Cartier index of KY .

Linear equivalence of Z-divisors is denoted by D1 ∼ D2. Two Q-divisors

are Q-linearly equivalent if mD1 ∼ mD2 for some m > 0. It is denoted by

D1 ∼Q D2. (See (11.43) for the R version.)

Numerical equivalence of divisors Di or curves Ci is denoted by D1 ≡ D2

and C1 ≡ C2.

The intersection number of R-Cartier divisors D1, . . . ,Dr on X with a proper

subscheme Z ⊂ X of dimension r is denoted by (D1 · · ·Dr · Z) or (D1 · · ·Dr)Z .

We omit Z if Z = X, and for self-intersections we use (Dr).

An R-Cartier divisor D (resp. line bundle L) on a proper scheme X is nef, if

(D ·C) ≥ 0 (resp. deg(L|C) ≥ 0) for every integral curve C ⊂ X.

Let g : X → S be a proper morphism. For aQ-Cartier divisor we use g-ample

and relatively ample interchangeably; see (11.51) for R-Cartier divisors.

The rounding down (resp. up) of a real number d is denoted by ⌊d⌋ (resp.

⌈d⌉). For a divisor D =
∑

diDi we use ⌊D⌋ :=
∑
⌊di⌋Di, where the Di are

distinct, irreducible divisors. The fractional part is {D} := D − ⌊D⌋.
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xvi Notation

An R-divisor D on a proper, irreducible variety is big if ⌊mD⌋ defines a

birational map for m ≫ 1.

A pair (X,∆ =
∑

aiDi) consist of a scheme X and a Weil divisor ∆ on it, the

coefficients can be in Z,Q or R. The divisor part of a pair is frequently called

the boundary of the pair. (Some authors call ∆ a boundary only if 0 ≤ ai ≤ 1

for every i.) When we start with a scheme X and a compactification X∗ ⊃ X,

frequently X∗ \ X is also called a boundary; this usage is well entrenched for

moduli spaces. (Neither agrees with the notion of “boundary” in topology.)

A simple normal crossing pair – usually abbreviated as snc pair – is a pair

(X,D), where X is regular, and at each p ∈ X there are local coordinates

x1, . . . , xn and an open neighborhood x ∈ U ⊂ X such that U ∩ Supp D ⊂

(x1 · · · xn = 0). We also say that D is an snc divisor. A scheme Y has simple

normal crossing singularities if every point y ∈ Y has an open neighborhood

y ∈ V ⊂ Y that is isomorphic to an snc divisor.

A log resolution of (X,∆) is a proper, birational morphism p : X′ → X,

where X′ is nonsingular and Supp π−1(∆) ∪ Ex(π) is an snc divisor.

We are mostly interested in proper pairs (X,∆) with log canonical singu-

larities (11.5). Such a pair is of general type if KX + ∆ is big. In examples,

we encounter pairs with KX + ∆ ≡ 0 (called (log)-Calabi–Yau pairs) or with

−(KX + ∆) ample (called (log)-Fano pairs).

In the literature, “canonical model” can refer to three different notions.

We distinguish them as follows. (See Section 11.2 for pairs and for relative

versions.)

Given a smooth, proper variety X, its canonical model is a proper variety Xc

that is birational to X, has canonical singularities and ample canonical class.

Given a variety X, its canonical modification is a proper, birational mor-

phism π : Xcm → X such that Xcm has canonical singularities and its canonical

class is π-ample.

Given a variety X with resolution Y → X, the canonical model of Y is the

canonical model of resolutions of X, denoted by Xcr. This is independent of Y .

Additional Conventions Used in This Book

These we follow most of the time, but define them at each occurrence.

The normalization of a scheme X is usually denoted by X̄ or Xn. However, if

D is a divisor on X, then usually D̄ denotes its preimage in X̄. Then D̄n denotes

the normalization of D̄. Unfortunately, a bar is also frequently used to denote

the compactification of a scheme or moduli space.
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Notation xvii

Usually, we use S ◦ ⊂ S to denote an open, dense subset. Then sheaves or

divisors on S ◦ are usually indicated by F◦ or D◦. If G is an algebraic group,

then G◦ denotes the identity component.

We write moduli functors in caligraphic and moduli spaces in roman. Thus

for stable varieties we have SV (functor) and SV (moduli space).

Let F,G be quasi-coherent sheaves on a scheme X. Then HomX(F,G) is the

set of OX-linear sheaf homomorphisms (it is also an H0(X,OX)-module), and

HomX(F,G) is the sheaf of OX-linear sheaf homomorphisms. See (9.34) for

the hom-scheme HomS (F,G).

MorS (X,Y) denotes the set of S -morphisms from X to Y , and MorS (X,Y)

the scheme that represents the functor T 7→ MorS (X×S T,Y ×S T ) (if it exists);

see (8.63). Same conventions for IsomS (X,Y) and AutS (X). If X is a proper

C-scheme, then one can pretty much identify AutC(X) with AutC(X).

We distinguish the Picard group Pic(X) (as in Hartshorne, 1977), and the

Picard scheme Pic(X) (as in Mumford, 1966).

Base change. Given morphisms f : X → S and q : T → S , we write the base

change diagram as

XT

fT

��

qX
// X

f

��

T
q

// S .

Objects obtained by pull-back to XT are usually denoted either by a subscript

T or by q∗
X

. The fiber over a point s ∈ S is denoted by a subscript s. However,

we frequently encounter the situation that the fiber product is not the “right”

pull-back and needs to be “corrected.” Roughly speaking, this happens when

the fiber product picks up some embedded subscheme/sheaf, and the “correct”

pull-back is the quotient by it.

Thus, for divisors D on X, we let DT denote the divisorial pull-back or

restriction, which is the divisorial part of X ×T D; see (4.6). We write Ddiv
T

if

we want to emphasize this (2.73). For coherent sheaves F on X, we frequently

use the hull bull-back, denoted by FH
T

or q
[∗]
X

F; see (3.27).

Brackets are used to denote something naturally associated to an object. We

use it to denote the cycle associated to a subscheme (1.3) and the point in the

moduli space corresponding to a variety/pair.

The completion of a pointed scheme (x ∈ X) is denoted by X̂, or X̂x if we

want to emphasize the point. For Ân, the point is assumed the origin, unless

otherwise noted. See also (10.52.6).
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xviii Notation

Numbering

We number everything consecutively. Thus, for example, (2.3) refers to item 3

in Chapter 2. References to sections are given as “Section 2.3.” Tertiary num-

bering is consecutive within items, including lists and formulas. For example,

(2.3.2) is subitem 2 in item (2.3), but within (2.3) we may use only (2) as

reference.
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