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Introducing Quantum Groups

The purpose of the first part of this text is to introduce objects called compact

quantum groups and to deal in full detail with their algebraic aspects and in par-

ticular their representation theory. It turns out that many interesting examples

of compact quantum groups fall into a specific subclass called compact matrix

quantum groups. This subclass has the advantage of being more intuitive, as

well as allowing for a simplified treatment of the whole theory. We will there-

fore restrict to it, and the connection with the more general setting of compact

quantum groups will be briefly explained in Appendix C.

We believe that there is no better way of introducing a new concept than

giving examples. We will therefore spend some time introducing one of the

most important families of examples of compact matrix quantum groups, first

defined by S. Wang in [72], called the quantum permutation groups.

1.1 The Graph Isomorphism Game

There are several ways of motivating the definition of quantum permutation

groups, because these objects are related to several important notions like

quantum isometry groups in the sense of non-commutative geometry (see, for

instance, [22] or [7]) or quantum exchangeability in the sense of free probabil-

ity (see, for instance, [50]). In this text, we will start from a recent connection,

first made explicit in [53], between quantum permutation groups and quantum

information theory. That connection appears through a game which we now

describe.

As always in quantum information theory, the game is played by two players

named Alice (denoted by A) and Bob (denoted by B). In this so-called graph

isomorphism game, they cooperate to win against the Referee (denoted by R)
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4 Introducing Quantum Groups

leading the game. The rules are given by two finite graphs,1 X and Y , with

vertex sets V (X) and V (Y ) respectively having the same cardinality, which

are known to A and B. At each round of the game, R sends a vertex vA ∈

V (X) to A and a vertex vB ∈ V (X) to B. Each of them answers with a vertex

wA ∈ V (Y ), wB ∈ V (Y ) of the other graph, and they win the round if the

following condition is matched.

Winning condition: ‘The relation2 between vA and vB is the same as the one

between wA and wB .’3

The crucial point is that once the game starts, A and B cannot com-

municate in any way. The situation can be summarised by the following

picture:

The question one asks is then, under which condition on the graphs X and Y

can the players devise a strategy which wins whatever the given vertices are?

It is not very difficult to see that the answer is the following (see Exercise 8.1

for a proof).

Proposition 1.1 There exists a perfect classical strategy if and only if X and

Y are isomorphic.

This settles the problem in classical information theory, but in the quantum

world, A and B can refine their strategy without communicating through the

use of entanglement. This means that they can set up a quantum mechanical

system and then split it into two parts, such that manipulating one part instantly

modifies the other one. We will not go into the details right now, but it turns out

that this gives more strategies, which are said to be quantum.4 By using these

1 The following discussion concerning graphs is only intended to motivate the introduction of
quantum permutation groups, hence we do not give precise definitions. A rigorous treatment
will be given in Chapter 8.

2 Here, by ‘relation’ we mean either being equal, being adjacent or not being adjacent.
3 This is not the most general version of the graph isomorphism game. We refer the reader to [2]

for a more comprehensive exposition.
4 The concept of quantum strategy turns out to be quite subtle, depending on the type of operators

allowed. We here use the term in a purposely vague sense and refer the reader to the discussion
at the beginning of Chapter 8 for more details.
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1.1 The Graph Isomorphism Game 5

quantum strategies, the previous proposition can be improved. Before giving a

precise statement, let us fix some notations.

• Given a Hilbert space H , we denote by B(H) the algebra of bounded (i.e.

continuous) linear maps from H to H;

• Given a graph X , we denote by AX the adjacency matrix of A.

The following result is a combination of [2, theorem 5.8] and [53, theorem

4.4].

Theorem 1.2 (Atserias–Lupini–Mančinska–Roberson–Šamal–Severini–Varvi-

tsiotis) There is a perfect quantum strategy if and only if there exists a matrix

P = (pij)16i,j6N with coefficients in B(H) for some Hilbert space H , such

that

• pij is an orthogonal projection for all 1 6 i, j 6 N ;

•
N∑

k=1

pik = IdH =
N∑

k=1

pkj for all 1 6 i, j 6 N ;

• AXP = PAY .

The proof of this result involves several tools coming from quantum infor-

mation theory, graph theory and compact quantum group theory. For those

reasons, we postpone it to Chapter 8.

Remark 1.3 From the perspective of quantum physics, this definition is at

least reasonable. Indeed, a family of orthogonal projections summing up to

one is a particular instance of a Positive Operator Valued Measure (see Def-

inition 8.1). We are therefore considering a collection of such objects with

compatibility conditions coming from the graphs.

Remark 1.4 It is not straightforward to produce a pair of graphs for which

there is a perfect quantum strategy but no classical one. The first example,

given in [2, section 6.2], has 24 vertices and is the smallest known at the time

of this writing.

An intriguing point of Theorem 1.2 is the operator-valued matrices which

appear in the statement. To understand them, let us consider the case H = C.

Then, the coefficients are scalars, and since they are projections, they all equal

either 0 or 1. Moreover, the sum over any row is 1, hence there is exactly one

non-zero coefficient on each row. The same being true for the columns, we

have a permutation matrix! We should therefore think of the operator-valued
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6 Introducing Quantum Groups

matrices as quantum versions of permutations, and this leads to the following

definition.

Definition 1.5 Let H be a Hilbert space. A quantum permutation matrix in H

is a matrix P = (pij)16i,j6N with coefficients in B(H) such that

• pij is an orthogonal projection for all 1 6 i, j 6 N ;

•
N∑

k=1

pik = IdH =
N∑

k=1

pkj for all 1 6 i, j 6 N .

Moreover, with this point of view the last point of Theorem 1.2 has a nice

interpretation. To explain it, let us first do a little computation.

Exercise 1.1 Let X,Y be graphs on N vertices and let σ ∈ SN . Numbering

the vertices from 1 to N , σ induces a bijection between the vertex sets of X

and Y . Prove this is a graph isomorphism if and only if

AXPσ = PσAY .

Solution Denoting by E(X) and E(Y ) the edge sets of X and Y respectively,

the (i, j)-th coefficient of AXPσ is

N∑

k=1

(AX)ik(Pσ)kj =
N∑

k=1

δ(i,k)∈E(X)δσ(k)j

= δ(i,σ−1(j))∈E(X),

while the corresponding coefficient of PσAY is

N∑

k=1

(Pσ)ik(AX)kj =

N∑

k=1

δ(k,j)∈E(Y )δσ(i)k

= δ(σ(i),j)∈E(Y ).

These are equal if and only if

(i, σ−1(j)) ∈ E(X) ⇔ (σ(i), j) ∈ E(Y ).

Setting k = σ−1(j), the condition is equivalent to

(i, k) ∈ E(X) ⇔ (σ(i), σ(k)) ∈ E(Y ),

which precisely means that σ induces a graph automorphism.

In view of this, the last point of Theorem 1.2 can be interpreted as saying

that the quantum permutation respects the edges of the graphs, so that one says

that the graphs are quantum isomorphic.
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1.2 The Quantum Permutation Algebra 7

1.2 The Quantum Permutation Algebra

1.2.1 Universal Definition

The brief discussion of Section 1.1 suggests that quantum permutation matri-

ces are interesting objects which require further study. However, their def-

inition lacks several important features of classical permutation matrices. In

particular, there is no obvious way to ‘compose’ quantum permutation matri-

ces, especially if they do not act on the same Hilbert space, so that one could

recover an analogue of the group structure of permutations. To overcome this

problem, it is quite natural from an (operator) algebraic point of view to intro-

duce a universal object associated to quantum permutation matrices. Note that,

in order to translate the fact that the operators pij are orthogonal projections,

it is convenient to use the natural involution on B(H) given by taking adjoints.

For this purpose, we will consider ∗-algebras, that is to say, complex algebras

A endowed with an anti-linear and anti-multiplicative involution x 7→ x∗.

Definition 1.6 Let As(N) be the universal ∗-algebra5 generated by N2

elements (pij)16i,j6N such that

1. p2ij = pij = p∗ij ;

2. For all 1 6 i, j 6 N ,

N∑

k=1

pik = 1 =
N∑

k=1

pkj ;

3. For all 1 6 i, j, k, ` 6 N , pijpik = δjkpij and pijp`j = δi`pij .

This will be called the quantum permutation algebra on N points.

Remark 1.7 The third condition in the definition may seem redundant since

it is automatically satisfied for projections in a Hilbert space. However, a

∗-algebra may not have a faithful representation on a Hilbert space, hence

Condition (3) does not necessarily follow from the two other ones.

Definition 1.6 refers to a so-called universal object and we will give a few

details about it for the sake of completeness. This roughly means that we want

the ‘largest possible’ algebra generated by elements that we call pij and such

that the relations in the statement are satisfied. Proving that such an object

exists and is well-behaved is not very difficult but requires a bit of abstraction.

The intuition is to start with a full algebra of non-commutative polynomials and

5 As the following relations show, we are in fact considering, here and throughout the text, uni-
versal unital algebras. For convenience we will drop the term ‘unital’ because we will never
consider non-unital algebras.
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8 Introducing Quantum Groups

then quotient by the desired relations. As for usual polynomials, it is easier to

use a definition based on sequences.

Definition 1.8 Given a set I , we denote by UI the complex vector space of all

finite linear combinations of finite sequences of elements of I . It is endowed

with the algebra structure induced by the concatenation of sequences, with the

empty sequence acting as a unit.

If we denote by Xi the sequence (i), then the elements (Xi)i∈I generate

UI and any element can therefore be written as a linear combination of prod-

ucts of these generators, the latter products being called monomials. Note that

this decomposition is unique up to the commutativity of addition. We there-

fore may, and should (and will) see UI as the algebra of all non-commutative

polynomials over the set I , and denote it by C〈Xi | i ∈ I〉. For our purpose,

we will turn this into a ∗-algebra by setting X∗

i = Xi for all i ∈ I .

Assuming now that we have a subset R ⊂ C〈Xi | i ∈ I〉 called relations,

here is how we can build our universal object.

Definition 1.9 The universal ∗-algebra generated by (Xi)i∈I with the rela-

tions R is the quotient of C〈Xi | i ∈ I〉 by the intersection of all the ∗-ideals

containing R. We will again denote its generators by (Xi)i∈I .

That this is the correct definition is confirmed by the following universal

property.

Exercise 1.2 Let A be a ∗-algebra generated by elements (xi)i∈I and let R ⊂

C〈Xi | i ∈ I〉. Prove that if P (xi) = 0 for all P ∈ R, then there exists a

unique surjective ∗-homomorphism from the universal ∗-algebra generated by

(Xi)i∈I with the relations R to A mapping Xi to xi.

Solution We first construct a ∗-homomorphism from C〈Xi | i ∈ I〉. The

requirements of the statements force π(Xi) = xi, and the fact that π is a ∗-

algebra homomorphism uniquely determines it on the whole of C〈Xi | i ∈ I〉,

that is,

π(Xi1 · · ·Xin) = xi1 · · ·xin .

Note that this makes sense because, by definition, the monomials are a basis

of C〈Xi | i ∈ I〉. Moreover, it is surjective because the xi’s are generators.

By assumption, ker(π) is a ∗-ideal containing R, hence it also contains the

intersection J of all the ∗-ideals containing it. As a consequence, π factors

through C〈Xi | i ∈ I〉/J , which is precisely the universal ∗-algebra.
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1.2 The Quantum Permutation Algebra 9

We now have a nice object to study, but the link to the classical permutation

group is somewhat blurred. To clear it up, let us consider the functions

cij : SN → C defined by

cij(σ) = δσ(i)j .

This is nothing but the function sending the permutation matrix of σ to its

(i, j)-th coefficient. In particular, cij always takes the value 0 or 1, hence

c∗ij = cij = c2ij .

Similarly, it is straightforward to check that Conditions (2) and (3) of Defin-

ition 1.6 are satisfied. Hence, by the universal property of Exercise 1.2, there

is a unique ∗-homomorphism

πab :

{
As(N) → F (SN )

pij 7→ cij ,

where F (SN ) is the algebra of all functions from SN to C. Moreover, since

the functions cij obviously generate the whole algebra F (SN ), πab is onto.

The subscript ‘ab’ is meant to indicate that πab is, in fact, the abelianisation

map, that is to say, the quotient by the ideal generated by all commutators. In

other words, we are claiming that F (SN ) is the largest possible commutative

∗-algebra satisfying the defining relations of As(N). The proof of that fact is

an easy exercise that we leave to the curious reader.

Exercise 1.3 Let BN be the universal ∗-algebra generated by N2 elements

(pij)16i,j6N satisfying Conditions (1), (2) and (3) as well as the relations

pijpk` = pk`pij ,

for all 1 6 i, j, k, ` 6 N .

1. For a permutation σ ∈ SN , we set

pσ =

N∏

i=1

piσ(i).

Prove that (pσ)σ∈SN
spans BN .

2. Deduce that there is a ∗-isomorphism BN → F (SN ) sending pij to cij .

Solution 1. Let us first observe that BN is by definition spanned by mono-

mials in the generators. Moreover, we claim that in such a monomial

p = pi1j1 . . . pikjk , we may assume that i` 6= i`′ and j` 6= j`′ for all

` 6= `′. Indeed, otherwise we can assume by commutativity that ` = ` + 1
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10 Introducing Quantum Groups

and, without loss of generality, that i` = i`+1. It then follows from the

defining relations that either j` = j`+1, in which case we can remove one

of these two terms since p2i`j` = pi`j` , or j` 6= j`+1, in which case p = 0.

A straightforward consequence of this is that, by the pigeonhole principle,

BN is spanned by monomials of length at most N .

Let us set denote by E the span of the elements in the statement. We

will prove by induction on k that any monomial of length N − k is in

E, for 0 6 k 6 N . The case k = 0 follows from the observations in

the previous paragraphs: since (i1, . . . , iN ) and (j1, . . . , jN ) are tuples of

pairwise distinct elements of {1, . . . , N}, there exists a permutation σ ∈

SN such that j` = σ(i`) for all 1 6 ` 6 N . Assume now that the result

holds for some k and consider a monomial

p = pi1j1 · · · piN−k−1jN−k−1
.

Let us choose an element iN−k ∈ {1, · · · , N} \ {i1 · · · iN−k−1}. Then,

p =
N∑

j=1

pi1j1 · · · piN−k−1jN−k−1
piN−kj

and the proof is complete.

2. By universality, there is a surjective ∗-homomorphism BN → F (SN )

sending pij to cij . But from the first question we know that

dim(BN ) 6 N ! = dim(F (SN )),

therefore the surjection must be injective.

We will now use this link to investigate a possible ‘group-like’ structure on

As(N). At the level of the coefficient functions, the group law of SN satisfies

the equation

cij(σ1σ2) =

N∑

k=1

cik(σ1)ckj(σ2).

The trouble here is that the right-hand side is an element of F (SN × SN ),

which has no analogue in terms of quantum permutations so far. It would be

more helpful to express the product solely in terms of F (SN ). It turns out that

there is an algebraic construction which exactly does this: the tensor product.

1.2.2 The Tensor Product

Our problem is to build the algebra of functions on SN × SN using only alge-

braic constructions on F (SN ). One may try to consider the direct product

www.cambridge.org/9781009345736
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-34573-6 — Compact Matrix Quantum Groups and Their Combinatorics
Amaury Freslon
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 The Quantum Permutation Algebra 11

F (SN )×F (SN ), but it has dimension 2N ! while F (SN ×SN ) has dimension

(N !)2, so that we need something else. Let us nevertheless focus on the direct

product to get some insight. Given two functions P and Q on SN , we can see

PQ as a two-variable function. However, the set theoretic map

Φ: (P,Q) ∈ F (SN )× F (SN ) 7→ PQ ∈ F (SN × SN )

fails to be linear. Indeed, we have the two following issues: first,

Φ((P,Q) + (P ′, Q′)) = Φ(P + P ′, Q+Q′)

= (P + P ′)(Q+Q′)

6= PQ+ P ′Q′

= Φ(P,Q) + Φ(P ′, Q′)

and second

Φ(λ(P,Q)) = Φ(λP, λ,Q)

= λ2PQ

6= λΦ(P,Q).

In order to remedy this, we can use a universal construction, as we already

did to define As(N). In other words, we will start from the largest vector space

on which the map Φ can be defined as a linear map.

Definition 1.10 Given two vector spaces V and W , the free vector space on

V × W is the vector space F(V × W ) of all finite linear combinations of

elements of V ×W .

One must be careful that the elements of V ×W form a basis of F(V ×W ),

hence

(v, w) + (v′, w′) 6= (v + v′, w + w′)

in that space. The point of this construction is that the map Φ, defined on

F (SN ) × F (SN ) by Φ(P,Q) = PQ, has by definition a unique extension to

a linear map

Φ̃ : F(F (SN )× F (SN )) → F (SN × SN ).

The problem is, of course, that this map is far from injective, and we have to

identify its kernel. Here are three obvious ways of building vectors on which

Φ̃ vanishes:
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12 Introducing Quantum Groups

• Φ̃((P,Q) + (P,Q′)) = PQ+ PQ′ = P (Q+Q′) = Φ̃(P,Q+Q′),

• Φ̃((P,Q) + (P ′, Q)) = PQ+ P ′Q = (P + P ′)Q = Φ̃(P + P ′, Q),

• Φ̃(λP,Q) = λPQ = Φ̃(P, λQ).

The main result of this section is that this is enough to generate the kernel.

Before proving this, let us give a formal definition.

Definition 1.11 Given two vector spaces V and W , we denote by I(V,W )

the linear subspace of F(V ×W ) spanned by the vectors

• (v, w) + (v, w′)− (v, w + w′),

• (v, w) + (v′, w)− (v + v′, w),

• (λv,w)− (v, λw),

for all (v, w) ∈ V ×W . Then, the tensor product of V and W is the quotient

vector space

V ⊗W = F(V ×W )/I(V,W ).

The image of (v, w) in this quotient will be denoted by v ⊗ w.

This construction may seem weird at first sight, since we are quotienting a

‘huge’ vector space by a ‘huge’ vector subspace. However, it turns out that the

result is very tractable and perfectly fits our requirements. Before proving this,

let us elaborate a bit more on the general construction by identifying a basis.

Proposition 1.12 Let (ei)i∈I and (fj)j∈J be bases of V and W respectively.

Then,

(ei ⊗ fj)(i,j)∈I×J

is a basis of V ⊗W .

Proof Let v ∈ V and w ∈ W . By assumption, they can be written as

v =
∑

i∈Iv

λiei and w =
∑

j∈Jw

µjfj

for some finite subsets Iv ⊂ I and Jw ⊂ J . Thus,

(v, w) −
∑

(i,j)∈Iv×Jw

λiµj(ei, fj) ∈ I(V,W )

by definition. In other words, we have in V ⊗W the equality

v ⊗ w =
∑

(i,j)∈Iv×Jw

λiµjei ⊗ fj ,

proving that the family is generating.
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