OFFSHORE WIND ENERGY

Many countries have plans to expand wind energy to meet CO_2 emissions targets. Lack of available land area and the need for good and stable wind conditions have stimulated the development of offshore wind generation technology, which allows for the development of larger turbines. The offshore environment, however, involves new challenges related to the design, installation, operation and maintenance of the turbines.

Based on graduate-level courses taught by the author, this book focuses on the opportunities and challenges related to offshore wind turbines. It introduces the offshore environment, including wind and wave dynamics, before discussing the aerodynamics of wind turbines, hydrodynamic loading, marine operations and wind farm layout. Featuring examples that demonstrate practical application of the topics covered and exercises to consolidate student understanding, this is an indispensable reference text for advanced students and researchers of environmental science and engineering and for industry professionals working in the wind energy sector.

FINN GUNNAR NIELSEN is Professor at the Geophysical Institute at the University of Bergen and was until 2023 Director of the Bergen Offshore Wind Centre, responsible for coordinating the offshore-wind-related research at the University of Bergen. He has worked in industrial research for more than 40 years. From 2002 he headed the research project developing the world's first full-scale floating wind turbine, the Hywind concept.

OFFSHORE WIND ENERGY

Environmental Conditions and Dynamics of Fixed and Floating Turbines

> FINN GUNNAR NIELSEN University of Bergen

Cambridge University Press & Assessment 978-1-009-34143-1 — Offshore Wind Energy Finn Gunnar Nielsen Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781009341431

DOI: 10.1017/9781009341455

© Finn Gunnar Nielsen 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2024

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data Names: Nielsen, Finn Gunnar, 1951– author. Title: Offshore wind energy : environmental conditions and dynamics of fixed and floating turbines / Finn Gunnar Nielsen. Description: Cambridge ; New York, NY : Cambridge University Press, [2023] | Includes bibliographical references and index. Identifiers: LCCN 2023028780 (print) | LCCN 2023028781 (ebook) | ISBN 9781009341431 (hardback) | ISBN 9781009341455 (ebook) Subjects: LCSH: Wind turbines. | Offshore wind power plants. Classification: LCC TJ828 .N54 2023 (print) | LCC TJ828 (ebook) | DDC 621.31/2136–dc23/eng/20230927 LC record available at https://lccn.loc.gov/2023028780 LC ebook record available at https://lccn.loc.gov/2023028781 ISBN 978-1-009-34143-1 Hardback Additional resources for this publication at www.cambridge.org/owe.

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface
rejuce

1	Introduc	tion	1
	1.1 Mot	tivation	1
	1.2 Con	tent of the Book	2
	1.3 The	Design Process	3
	1.4 The	Layout of Wind Turbines	6
	1.4.1	Horizontal-Axis Wind Turbines	6
	1.4.2	2 Horizontal-Axis Multirotors	8
	1.4.3	3 Vertical-Axis Turbines	8
	1.4.4	4 High-Altitude Wind Power Devices	9
	Exercises	s Chapter 1	10
2	The Offs	shore Environment	11
-	2.1 Win	d	12
	2.1 1	L Introduction	12
	2.1.1	The Marine Atmospheric Boundary Laver	12
	2.1.2	2 1 2 1 Mean Velocity Profile	12
		2.1.2.1 Mean velocity Frome	17
		2.1.2.2 Statility 2.1.2.3 Shear Exponent and Stability	23
		2.1.2.5 Shear Exponent and Statisticy	23
		2.1.2.5 Coherence	24
		2.1.2.6 Mann's Turbulence Model	30
	2.13	3 Numerical Generation of Wind Fields	34
	2.1.4	4 Long-Term Wind Statistics	40
	2.1.4	5 Wind Measurements	42
	2.1	2.1.5.1 Cup Anemometers	42
		2 1 5 2 Sonic Anemometers	43
		2.1.5.3 Lidar	45
		=	15

page xi

vi		Contents	
	2.2	Ocean Wayes	47
		2.2.1 Introduction	47
		2.2.2 Assumptions	47
		2.2.3 Solution	48
		2.2.4 Waves in Shallow Water	51
		2.2.5 Energy in Waves	54
		2.2.6 Superposition of Waves: Wave Spectrum	56
		2.2.7 Wave Kinematics in Irregular Waves	62
	2.3	Wave Statistics	64
		2.3.1 Short-Term Statistics	65
		2.3.1.1 Confidence Limits for Short-Term Extreme Values	66
	F	2.3.2 Long-Term Wave Statistics	68
	Exe	rcises Chapter 2	72
3	Wii	nd Energy and Wind Loads	77
	3.1	The Betz Theory	78
	3.2	Including the Effect of Wake Rotation	81
	33	Two-Dimensional Lifting Surfaces	88
	0.0	3.3.1 Lift by Vortex Theory	90
		3.3.2 Two-Dimensional Aerofoils	91
	3.4	The Blade Element Momentum Method	98
	3.5	Drag-Based Devices	104
	3.6	Unsteady Effects	108
	5.0	3.6.1 Step Changes: Two-Dimensional Aerofoils	108
		3.6.2 Harmonic Oscillations: Two-Dimensional Aerofoils	111
		3.6.3 Inertia and Damping Effects	113
		3.6.4 Implementation on a Wind Turbine Rotor	116
	3.7	Vortex Methods	121
		3.7.1 Velocity Induced by a Three-Dimensional Vortex Line	121
		3.7.2 Variation in Vortex Strength along Wingspan	123
		3.7.3 Transient Effects: The Start Vortex	129
		3.7.4 The Vortex Lattice Method	130
	3.8	Characteristics of Horizontal-Axis Wind Turbines	132
		3.8.1 Reference Turbines	135
	3.9	Control of Horizontal-Axis Wind Turbines with Variable	
		Speed and Blade Pitch	137
		3.9.1 Simple Controllers	138
		3.9.2 Control below Rated Wind Speed	139
		3.9.5 Control above Kated Wind Speed	143
	Erre	3.7.4 Oner Control 1880cs	149
	схе	acises Chapter 5	150

Cambridge University Press & Assessment 978-1-009-34143-1 — Offshore Wind Energy Finn Gunnar Nielsen Frontmatter <u>More Information</u>

	Contents	vii
4	Support Structures for Offshore Wind Turbines	153
	4.1 Introduction	153
	4.2 Components of an Offshore Wind Turbine	154
	4.3 Fixed Substructures	156
	4.3.1 Monopiles	157
	4.3.2 Jackets	158
	4.3.3 Tripods 4.3.4 Gravity Based Substructures	158
	4.4 Floating Substructures	159
	4.4.1 Semisubmersibles	160
	4.4.2 Spars	162
	4.4.3 Tension Leg Platforms	164
	4.4.4 Barge-Like Structures	165
	4.4.5 Choice of Substructure	166
5	Linear Dynamics	168
	5.1 SDOF System: Free Oscillations	168
	5.2 SDOF System: Forced Oscillations	172
	5.3 System with Multiple Degrees of Freedom	173
	5.4 Continuous System	178
	Exercises Chapter 5	182
6	Wave Loads on Fixed Substructures	184
Ũ	6.1 General Principles of Computing Wave Loads on Small Bodies	184
	6.2 Wave Forces on Slender Structures	186
	6.2.1 Wave Forces on Vertical Cylinders: The Morison Equation	186
	6.2.2 Wave Forces on Inclined Cylinders	188
	6.2.3 Effect of Finite Length of a Cylinder	190
	6.3 Wave Force on Non-Slender Vertical Cylinders: MacCamy	
	and Fuchs Theory	190
	6.4 Bodies of General Shape	193
	6.5 Effects of Steep Waves	200
	6.5.1 Drag Forces	200
	6.5.2 Slamming	201
	6.6 Modal Loads	205
	6.7 Modeling of Bottom Sediments	200
	Exercises Chapter 6	211
		<u>~</u> 11
7	Floating Substructures	213
	7.1 Wave-Induced Motions: Equations of Motion	214

viii		Contents	
	7.2	The Mass Matrix	216
		7.2.1 The Dry Mass Matrix	216
		7.2.2 The Added Mass Matrix	217
		7.2.2.1 Vertical Columns	217
		7.2.2.2 Horizontal Pontoons	219
		7.2.2.3 Horizontal Disks	222
		7.2.2.4 Transformation of the Added Mass Matrix	
		to a New Coordinate System	224
	7.3	Damping	225
		7.3.1 Radiation Damping	225
		7.3.2 Viscous Damping	227
		7.3.3 Linearization of Viscous Damping	227
	74	7.3.4 The Drag Coefficient	232
	7.4	Wave Excitation Forces	233
		7.4.1 Slender Bodies of General Shape	233
		7.4.2 Wave Forces on a Vertical Column	233
		7.4.5 Wave Forces on a Horizontal Pontoon	233
		7.4.4 Women's Acting on a monizontal Fontoon 7.4.5 Viscous Drag Effects	239
		7.4.6 Cancellation Effects	240
		7.4.7 Wave Forces on Large-Volume Structures: Boundary Element	
		Method	243
		7.4.8 Time Domain Simulations with Frequency-Dependent	
		Coefficients	245
	7.5	Restoring Forces	248
		7.5.1 Hydrostatic Effects	248
		7.5.2 Effect of Catenary Mooring Lines	248
		7.5.3 Effect of Tether Mooring	250
	7.6	Mooring Lines	251
		7.6.1 The Concept of Effective Tension	252
		7.6.2 Inelastic Catenary Line	254
		7.6.3 Elastic Catenary Line	256
		7.6.4 Restoring Characteristics	257
		7.6.5 Dynamic Effects	259
	7.7	Low-Frequency Wind-Induced Motions	265
	7.8	Control Issues for Floating Wind Turbines	268
		7.8.1 Introduction	268
		7.8.2 Action of a Conventional Controller	269
		7.8.2.1 Below Rated Wind Speed	270
		7.8.2.2 Above Rated Wind Speed	271
		7.8.3 Control of Low-Frequency Motions	274
		7.8.2.2 Lise of a Notab Eiltor	2/4
		7.0.3.2 Use of a Notion Filter	∠/4 278
		7.8.3.4 Use of Energy Shaping Control	270
		7.8.3.5 Examples from the Hywind Demo Development	283
		, tele Dampies from the Hy white Development	200

Cambridge University Press & Assessment 978-1-009-34143-1 — Offshore Wind Energy Finn Gunnar Nielsen Frontmatter <u>More Information</u>

	Contents	ix
	7.8.4 Some Possible Dynamic Instabilities	284
	7.8.4.1 Heave-Pitch (Roll) Coupling	284
	7.8.4.2 Roll-Yaw Coupling	286
	Exercises Chapter 7	287
8	Marine Operations	291
	8.1 Installation Operations	292
	8.1.1 Bottom-Fixed Wind Turbines	292
	8.1.2 Floating Wind Turbines	295
	8.2 Access	298
	8.3 Weather Windows	299
	8.3.1 Introduction	299
	8.3.2 Duration Statistics for Calm wave Conditions	300
	8.3.4 Simulation of Weather-Restricted Marine Operations	305
	8.4 Dynamics of Lifting Operations	308
	8.4.1 Coupled Dynamics for a Simple Lifting Operation	309
	8.4.2 Mathieu Instability	320
	8.4.3 Simulation of Impact during Mating Operations	322
	8.5 Statistics of Impacts and Snatch Loads during Mating Operations	327
	Exercises Chapter 8	332
9	Offshore Wind Farms	334
	9.1 Cost of Electricity	335
	9.2 Wind Farm Layout	336
	9.3 Wakes	341
	9.3.1 Simple Wake Models	342
	9.3.2 Summation of Wakes	345
	9.3.3 Other Wake Issues	347
	9.3.3.1 Wake Meandering 9.3.3.2 Wind Veering	347
	9.3.3.3 Wind Farm Wakes	348
	9.3.3.4 Effect of the Induction Zone	349
	9.3.3.5 Wind Farm Control/Turbine Yaw	349
	Exercises Chapter 9	349
App	pendix A	351
App	pendix B	354
App	pendix C	356
App	pendix D	359
Ap	pendix E	364
Ref	ferences	368
Ind	lex	378

Additional resources for this title can be found at www.cambridge.org/owe.

Preface

The inspiration to write this book came from the recent focus on offshore wind energy as part of the solution to convert the global energy supply from fossil fuel to renewables. Several important actors, e.g., the International Energy Agency, have pointed toward the potential large contribution from offshore wind energy in the future energy supply. However, moving wind turbines into the ocean and scaling up the turbine sizes adds new challenges compared to traditional wind turbines on land. To realize the offshore wind energy potential, increased competence in a wide range of professional disciplines is thus required.

In my personal professional carrier, I have dealt with topics such as ship hydrodynamics, propeller design, model and full-scale testing, wave loads, structural loads and marine operations, as well as analyzing and testing fixed and floating wind turbines. I have realized that the design and operation of offshore wind turbines relies upon an understanding of a wide range of scientific and engineering disciplines. Even if no individual involved in planning, design and operation can master all the required disciplines in detail, some basic insight is needed to secure precise and efficient communication between specialists. My hope is that this book can contribute to this. The book covers a wide range of topics but does not cover every topic in great detail. For that purpose, references are given to specialized literature.

Most of the material included in this book is based upon material used in lecturing graduate-level courses in marine operations at the Norwegian University of Science and Technology (NTNU) (Nielsen, 2007) and courses in offshore wind energy at the University of Bergen (UiB). The material also builds upon methods developed and published during my carrier in industry. Having the privilege to lead the research project developing the world's first multimegawatt floating wind turbine, Hywind Demo (installed offshore of Norway in 2009), gave me a unique opportunity to experience the importance of cross-disciplinary insight. Also, having the privilege to head the Bergen Offshore Wind Centre (BOW) at UiB from its inauguration in 2018

Cambridge University Press & Assessment 978-1-009-34143-1 — Offshore Wind Energy Finn Gunnar Nielsen Frontmatter <u>More Information</u>

xii

Preface

has given me the opportunity to further explore and learn the importance of crossdisciplinary work. At BOW, e.g., noise from wind turbines, the erosion of turbine blades, impacts on the marine environment, societal perspectives and legal issues have been covered. These are all important issues for the successful development of offshore wind energy, but are not covered in this book.

My hope is that this book can be used in graduate as well as continued education within offshore wind energy, giving a broad overview of key topics related to the environmental conditions and dynamic response of offshore wind turbines. For deeper insight into, e.g., meteorology, aerodynamics and marine hydrodynamics, specialized courses and literature should be consulted.

This book could not have been written without the encouragement and inspiration of several persons, among them: Christina Aabo of Aabo Energy and a member of the Scientific Advisory Board (SAC) of BOW; Jan-Fredrik Stadaas of Equinor and a member of SAC; Adjunct Associate Professor Marte Godvik, UiB and Equinor; Professor Henrik Bredmose, DTU and member of SAC; and Dr. Kristin Guldbrandsen Frøysa, Energy Director at UiB. Many individuals have also contributed with comments and advice on specific chapters, among them several present and former colleagues: Adjunct Professor Bjørn Skaare, University of Stavanger and Equinor; Dr. Herbjørn Haslum, Equinor; Dr. Rolf Børresen; Adjunct Professor Birgitte Rugaard Furevik, UiB and Norwegian Meteorological Institute; Associate Professor Mostafa Bakhoday Paskyabi, UiB; Professor Cristian Guillermo Gebhardt, UiB; Professor Joachim Reuder, UiB; Associate Professor Etienne Cheynet, UiB; Dr. Astrid Nybø, Odfjell Offshore Wind; and Dr. Ida Marie Solbrekke, NORCE. Thanks to all for their contributions! Thanks also to Anna Therese Klingstedt for creating the illustrations of floating wind turbines.