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Lectures on Vertex Algebras

Atsushi Matsuo

Abstract

The purpose of the present chapter is to explain the basics of vertex algebras, as
well as some more advanced topics on vertex operator algebras, to the reader
mainly in the fields of group theory and algebraic combinatorics.
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Introduction

The Monster, the largest sporadic finite simple group of order

2
46 · 3

20 · 5
9 · 7

6 · 11
2 · 13

3 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

= 808017424794512875886459904961710757005754368000000000,
54 digits

is known to be realized as the automorphism group of the moonshine mod-
ule V♮, a distinguished example of a vertex operator algebra, equipped with a
grading of the shape
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V♮
= C1 ⊕ 0 ⊕ B♮ ⊕ V♮

3
⊕ V♮

4
⊕ · · · ,

dim 1 0 196884

of which the dimensions of the homogeneous subspaces satisfy

q−1

∞
∑

n=0

dimV♮
n qn
= j(τ) − 744

= q−1
+ 0 + 196884q + 21493760q2

+ · · · ,
(1)

where j(τ) is the elliptic modular function and q = e2π
√
−1τ .

The 196884-dimensional subspace B♮ of degree 2 inherits a structure of a
commutative nonassociative algebra with unity equipped with a nondegenerate
symmetric invariant bilinear form, which we call the Griess–Conway algebra,
as suggested by S. P. Norton. The algebra B♮ is a variant of the algebras con-
structed by R. L. Griess in [61] to prove the existence of the Monster, and it is
indeed the same as the algebra constructed by J. H. Conway in [38].

The notion of vertex algebras was introduced by R. E. Borcherds in the
seminal paper [32] in 1986 by axiomatizing properties of infinite sequences
of operators constructed from even lattices that generalize those considered for
the root lattices of ADE type in the famous Frenkel–Kac construction, achieved
by I. B. Frenkel and V. G. Kac in [57], to realize representations of affine Kac–
Moody algebras associated with simple Lie algebras of the corresponding type.
Such sequences of operators are related to the vertex operators in string the-
ory, whence the term vertex algebra. The vertex operator is actually not a single
operator but an infinite series with operator coefficients. The concept of vertex
algebras can be seen to be a mathematical formulation of what is called the
operator product algebra or the chiral algebra in physics.

Borcherds then applied vertex algebras to the study of the Monster via the
moonshine module V♮, which was previously introduced by I. B. Frenkel, J.
Lepowsky, and A. Meurman [59] as a vector space equipped with some struc-
tures, and achieved in [33], with numerous outstanding ideas and works, the
proof of the Conway–Norton conjecture, the conjecture that states the famous
moonshine phenomena relating representations of the Monster and certain modu-
lar functions, the simplest among which is (1).

The concepts of vertex operator algebras (VOA) and their modules, in turn,
were formulated by I. B. Frenkel, J. Lepowsky, and A. Meurman in [1] in order
to set up appropriate “algebras” and “modules” by modifying those for vertex
algebras. More precisely, a VOA is not just a vertex algebra, but a pair con-
sisting of a vertex algebra and its element generating a representation of the
Virasoro algebra satisfying a number of conditions that would make it suitable
for applications.
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Table 1 Codes, lattices and VOAs

Doubly even codes Postive-definite
even lattices VOAs

Length Rank Central charge
Weight enumerator Theta function Conformal character
Self-dual Unimodular Holomorphic
Extended Hamming code H8 Gosset lattice E8 Lattice VOA VE8

Extended Golay code G24 Leech lattice Λ Moonshine module V♮

Mathieu group M24 Conway group C0 Monster M = F1

For example, VOAs are assumed to be graded by integers with the homoge-
neous subspaces being finite-dimensional, so that one may consider the con-
formal character, the generating series of dimensions such as (1).

In fact, important applications of vertex algebras are often based on the prop-
erties of the Virasoro algebra, thus justifying the definition of VOAs.

The moonshine module V♮ indeed carries a natural structure of a VOA. It
possesses a distinguished position among VOAs when viewed through the fa-
mous analogies of binary codes, lattices, and VOAs as indicated in Table 1,
although the uniqueness of V♮ conjectured in [1], which is an analogue of the
uniqueness of the extended Golay code G24 and the Leech lattice Λ, is yet to
be settled. Thus the concept of VOAs is as natural as those of binary codes
and lattices. However, even constructing a single example of a VOA is not so
easy.

In Section 1.1, we will describe the definition of vertex algebras after pre-
liminary sections, and then proceed to realization of vertex algebras by formal
series with operator coefficients in Section 1.2, where the concept of modules
over vertex algebras will also be introduced. Such realization enables us to
state and prove the existence of vertex algebra structures under certain circum-
stances. Standard examples of vertex algebras will be described in Section 1.3.

Section 1.4 is devoted to construction of the vertex algebras associated with
even lattices, where commutation relations of vertex operators play fundamen-
tal roles. In Section 1.5, we will explain the definition and construction of what
are called twisted modules over vertex algebras by repeating the arguments of
the previous sections in slightly more general settings, which enables one to
construct the moonshine module V♮ as a module over a fixed-point subalgebra
of the Leech lattice vertex algebra by a lift of the (−1)-involution.

In Section 1.6, we will give brief accounts of theory of VOAs including fu-
sion rules and modular invariance. We will then finish the sections by mention-
ing properties of the moonshine module and their variants that opened ways to
new research directions.

www.cambridge.org/9781009338042
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-33804-2 — Algebraic Combinatorics and the Monster Group
Edited by Alexander A. Ivanov 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Lectures on Vertex Algebras 7

The author is grateful to Professors Alexander A. Ivanov and Elena V. Kon-
stantinova for inviting him to give the series of lectures in G2G2 2021 at Rogla.
It was a hard task, to be honest, but very much fruitful indeed. The lectures were
actually given online from Tokyo, and the author wishes to visit Rogla some-
time in the future.

The author thanks Takuro Abe, Tomoyuki Arakawa, Hiroki Shimakura and
Hiroshi Yamauchi for useful conversations in preparation of the manuscripts
for the lectures and the referee for useful comments. The present sections are
partly based on the author’s past lectures at Nagoya Institute of Technology,
National Taiwan University, University of the Ryukyus in 2003 etc.

1.1 Axioms for Vertex Algebras

A vertex algebra is a vector space equipped with countably many binary oper-
ations indexed by integers satisfying a number of axioms.

In Section 1.1, we start with preliminary sections on algebras and formal ser-
ies and then describe the definition of vertex algebras and some consequences
of the axioms. We will give a few examples: the commutative vertex algebras,
the Heisenberg vertex algebra, and a Virasoro vertex algebra as a vertex subal-
gebra of the Heisenberg vertex algebra.

We will work over a field F of any characteristic not 2, thus vector spaces
and linear maps are always over such a field F, unless otherwise stated. We
denote the set of integers by Z and that of nonnegative integers by N.

1.1.1 Preliminaries on Algebras
For a vector space M, consider the set EndM of all operators (endomorphisms)
acting on M. The symbol I = IM refers to the identity operator.

For an operator A ∈ EndM, we will denote the value of A at v ∈ M by
juxtaposition:

A : M // M, v 7→ Av.

Compositions of operators, also written by juxtaposition, are taken from right
to left unless specified by parentheses: for A,B,C ∈ EndM and v ∈ M,

ABC = A(BC), ABCv = A(B(Cv)), etc.

The commutator of operators is denoted by the bracket as

[A,B] = AB − BA

for A,B ∈ EndM.
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1.1.1.1 Associative Algebras
Let us first recall the definition of associative algebras. We will always assume
that associative algebras are unital.

An associative algebra is a vector space A equipped with a bilinear map

A × A // A, (a, b) 7→ ab,

called multiplication or the product operation, satisfying the following axioms:

(A1) Associativity. For all a, b, c ∈ A:

(ab)c = a(bc).

(A2) Unity. There exists an element 1 ∈ A such that for all a ∈ A:

1a = a and a1 = a.

The element 1 ∈ A in (A2) is uniquely determined by the conditions therein
and called the unity of A,

For a vector space M, the set EndM of all operators acting on M becomes
an associative algebra by composition of operators, of which the unity is the
identity operator.

1.1.1.2 Modules over Associative Algebras
A module over A, or an A-module, is a vector space M equipped with a bilinear
map

A ×M // M, (a, v) 7→ av,

called an action of A on M, satisfying

(AM1) Associativity. For all a, b ∈ A and v ∈ M:

(ab)v = a(bv).

(AM2) Identity. For all v ∈ M: 1v = v.

For a ∈ A, the operator on M sending v to av is called the action of a on M.
For an A-module M, consider the map assigning the action on M to each

element of A:

ρM : A // EndM, a 7→ [v 7→ av].

Then this map is a homomorphism of algebras. Such a homomorphism is called
a representation of A on M. The concepts of modules over A and representa-
tions of A are essentially the same.
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The algebra A itself becomes an A-module by the product operation, for
which the left action of a ∈ A sending x to ax is called left multiplication by
a. The corresponding representation

ρA : A // EndA, a 7→ [x 7→ ax]

is an isomorphism of algebras onto its image.

1.1.1.3 Lie Algebras
A Lie algebra is a vector space L equipped with a bilinear map

[ , ] : L × L // L, (X,Y ) 7→ [X,Y ],

called the bracket operation, satisfying

(1) For all X,Y, Z ∈ L:

[X, [Y, Z ]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0.

(2) For all X ∈ L:
[X,X ] = 0.

As the base field is assumed to be not of characteristic 2, the set of the two
conditions is equivalently replaced by

(L1) Jacobi identity. For all X,Y, Z ∈ L:

[[X,Y ], Z ] = [X, [Y, Z ]] − [Y, [X, Z ]].

(L2) Antisymmetry. For all X,Y ∈ L:

[X,Y ] = −[Y,X ].

Throughout the sections, we will take the latter conditions (L1) and (L2) as
the axioms for Lie algebras and call the identity in (L1) the Jacobi identity,
although this term usually refers to (1) rather than (L1).

For a vector space M, the space EndM becomes a Lie algebra by the com-
mutator of operators, for which the Jacobi identity

[[A,B],C] = [A, [B,C]] − [B, [A,C]], A,B,C ∈ EndM

trivially holds by cancellation of terms in

(ABC − BAC) − (CAB − CBA)
=

(

(ABC − ACB) − (BCA − CBA)
)

−
(

(BAC − BCA) − (ACB − CAB)
)

.
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A variant of this simple observation will serve as a basis for the Borcherds
identity, the main identity for vertex algebras, where A,B,C are replaced by
series with operator coefficients. (See Subsection 1.2.3.1.)

Similarly, any associative algebra A is regarded as a Lie algebra by the com-
mutator

[a, b] = ab − ba, a, b ∈ A.

We will denote this Lie algebra by L(A).
Note 1.1. A vector space L equipped with a bracket operation satisfying (L1)
but not necessarily (L2) is called a (left) Leibniz algebra and the property (L1)
is called the (left) Leibniz identity. Note that (L1) is equivalently written as

[X, [Y, Z ]] = [[X,Y ], Z ] + [Y, [X, Z ]],

which says that the operations of taking the brackets by elements of L are
derivations with respect to the bracket operation itself.

1.1.1.4 Modules over Lie Algebras
An L-module, or a module over L, is a vector space M equipped with a bilinear
map

L ×M // M, (X, v) 7→ Xv,

satisfying

(LM) For all X,Y ∈ L and v ∈ M:

[X,Y ]v = X(Yv) − Y (Xv).

For an L-module M, consider the map assigning the corresponding action on
M to each element of L:

ρM : L // EndM, X 7→ [v 7→ Xv].

Then this map is a homomorphism of Lie algebras. Such a homomorphism
is called a representation of L on M. The concepts of modules over L and
representations of L are essentially the same.

The Lie algebra L itself becomes an L-module by the bracket operation, for
which the action of X ∈ L sending Y to [X,Y ] is called the adjoint action of X ,
and the corresponding representation

ρL : L // EndL, X 7→ [Y 7→ [X,Y ]],

is called the adjoint representation of L.
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