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Category Theory

Elementary category theory is concerned with categories, functors, and nat-

ural transformations. As described in Mac Lane (1998):

<category= has been deoned in order to be able to deone <functor= and <functor=
has been deoned in order to be able to deone <natural transformation.=

We shall consider each notion in turn, whilst simultaneously preparing the

grounds for string diagrams to be introduced in Chapter 2.

1.1 Categories

A category consists of objects and arrows between objects. The letters ÿ,

ÿ, & range over categories, and the uppercase letters A,B, & over objects.

We write A 6 ÿ to express that A is an object of the category ÿ. Lowercase

letters f , g, & range over arrows, and we write f 6 A ³ B 6 ÿ to express

that f is an arrow from A to B in the category ÿ. The object A is called the

source of f and B its target. If ÿ is obvious from the context, we abbreviate

f 6 A ³ B 6 ÿ by f 6 A ³ B.

For every object A 6 ÿ there is an arrow idA 6 A ³ A, called the identity.

Two arrows can be composed if their types match: if f 6 A ³ B and g 6 B ³

C , then g ç f 6 A ³ C (pronounced <g after f =). We require composition to

be unital and associative, with identity as its neutral element:

idB ç f = f = f ç idA, (1.1a)

(h ç g) ç f = h ç (g ç f ). (1.1b)

1.1.1 Examples of Categories. To make the abstract notion of category

more tangible, we introduce several examples, many of which will accom-

pany us throughout the monograph. We begin with two trivial but useful

categories:
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2 Category Theory

Example 1.1 (0 and 1). There is a category, denoted 0, with no objects

and no arrows. There is also a category 1, with one object and one arrow,

the identity on the single object.

Categories can be seen as generalizations of possibly more familiar math-

ematical objects.

Example 1.2 (Monoids and Preorders). Two extreme classes of categories

are worth singling out.

A monoid (A, e, ") can be seen as a category that has exactly one object.

The arrows are the elements of the monoid: e serves as the identity and "

as composition.

A preorder (A, �) can be seen as a category with at most one arrow

between any two objects, which are the elements of the preorder. There

exists an arrow of type a ³ b if and only if a � b; renexivity ensures the

existence of identities and transitivity the existence of composites.

A category is often identioed with its collection of objects: we loosely say

that Set is the category of sets. However, equally if not more important

are the arrows of a category. So, Set is really the category of sets and total

functions. There is also Rel, the category of sets and relations.

Remark 1.3 (Preservation and Renection of Structure). An arrowpreserves

structure if features of the source allow us to deduce features of the target.

For example, if h 6 (A, 0, +) ³ (B, 1, ×) is a monoid homomorphism, and

a + a2 = 0 holds in the source monoid, then h a × h a2 = 1 holds in the

target monoid. This is exactly the motivation for homomorphisms between

algebraic structures: they preserve equations.

An arrow renects structure if we can infer properties of the source from

properties of the target. Notice the backward direction of travel.

To illustrate this, let us orst establish some useful notation that we need

time and again. For a function f 6 A ³ B there is a direct image func-

tion taking subsets of A to subsets of B:

f ½ X v {y * B # #x * X . f x = y}.

There is also an inverse image function, mapping subsets in the opposite

direction:

f ç Y v {x * A # #y * Y . f x = y}.

With this notation in place, if h 6 A ³ B is a continuous map of topological

spaces, Y ¦ B being an open subset of B implies f ç Y ¦ A is an open set
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1.1 Categories 3

in A. So, structure in the target implies structure in the source, and these

topological arrows renect structure.

Example 1.4 (Sets and Structures). Many examples of categories used in

practice are sets with additional structure, and functions that preserve or

renect this structure.

Sets with additional structure include monoids, groups, preorders, lattices,

graphs, and so on. In each of these cases the arrows are structure-preserving

maps. For example, Mon is the category of monoids and monoid homo-

morphisms. Notice the diference as compared to Example 1.2. There we

considered a single monoid; here we consider the collection of all monoids

and homomorphisms between them. Likewise, we can form the category

Pre, whose objects are preorders and whose arrows are monotone or order-

preserving functions.

Further examples include Bool, Sup, and CompLat, which are respec-

tively the categories of Boolean lattices, complete join-semilattices, and com-

plete lattices, with homomorphisms preserving the algebraic structure. Note

that, although every complete join-semilattice is automatically a lattice, the

categories Sup and CompLat are diferent, as the arrows preserve diferent

structure.

As well as these examples with structure-preserving maps, there are exam-

ples where the arrows renect structure, such as the categories Top and Met

of topological spaces and metric spaces, with continuous maps as arrows.

The following category, which will accompany us as a running example,

is perhaps slightly more unusual.

Example 1.5 (Category of Actions). Let (M , e, ") be a oxed monoid. The

objects of the category M -Act are pairs (A,ç), where A is a set and (ç) 6

M × A ³ A is an operation that respects the monoid structure:

e ç a = a, (1.2a)

(m " n) ç a = m ç (n ç a). (1.2b)

The operation is also called a left action of M . An arrow f 6 (A,ç) ³ (B,ç)

in M -Act is a function of type A ³ B that preserves actions:

f (m ç a) = m ç f a, (1.3)

also known as an equivariant function.

There are many ways of constructing new categories from old, as we will

see in later sections. For now, we consider three useful cases.
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4 Category Theory

Deonition 1.6 (Subcategories). A subcategory ÿ of a category ÿ is a collec-

tion of some of the objects and some of the arrows of ÿ, such that identity

and composition are preserved to ensure ÿ constitutes a valid category. For

example, Set is a subcategory of Rel as every function is a binary rela-

tion. Commutative monoids CMon and commutative, idempotent monoids

CIMon form subcategories of Mon.

In a full subcategory the collection of arrows is maximal: if f 6 A ³ B 6 ÿ

and A, B 6 ÿ, then f 6 A ³ B 6 ÿ. The category Fin of onite sets and total

functions is a full subcategory of Set.

Deonition 1.7 (Opposite Categories). For any category ÿ we can consider

its opposite category ÿýý. This has the same objects as ÿ, but an arrow of

type A ³ B in ÿýý is an arrow of type B ³ A in ÿ. Identities in ÿýý are

as in ÿ, and composition in ÿýý is given by forming the reverse composite

in ÿ. The process of swapping source and target is purely bureaucratic; it

does not do anything to the arrows.

Deonition 1.8 (Product Categories). For any pair of categories ÿ and ÿ

we can form their product ÿ×ÿ. An object of the product category is a pair

of objects (A, B) with A 6 ÿ and B 6 ÿ; an arrow of type (A, C) ³ (B, D) 6

ÿ × ÿ is a pair of arrows (f , g) with f 6 A ³ B 6 ÿ and g 6 C ³ D 6 ÿ.

Identity and composition are deoned componentwise,

id(A,B) v (idA, idB), (1.4a)

(g1, g2) ç (f1, f2) v (g1 ç f1, g2 ç f2), (1.4b)

in terms of identity and composition of the underlying categories.

1.1.2 Graphical Representation of Objects and Arrows. We have

noted in the prologue that notation matters, so a brief discussion of the

syntax is certainly not amiss. Composition of arrows is a binary operation.

Applications of binary operations or 2-ary functions are variably written

preox op a b, inox a op b, or postox a b op, often with additional syntactic

ornaments such as parentheses or commas. We have opted to write com-

position inox as g ç f . Why? Inox notation has a distinct advantage over

the alternatives when expressions are nested as in h ç g ç f . At the outset,

nested inox expressions are ambiguous, consider for example a 2 b 2 c. Do

we intend to say (a 2 b) 2 c or a 2 (b 2 c)? Convention has it that a 2 b 2 c

is resolved to (a 2 b) 2 c. For composition, however, the problem of am-

biguity dissolves into thin air as composition is associative (1.1b). Here a

bug has been turned into a feature: in calculations we do not have to in-

voke the associative law explicitly; it is built into the notation. By contrast,
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1.1 Categories 5

say we wrote composition preox; then we are forced to express h ç g ç f as

either comp (h, comp (g, f )) or as comp (comp (h, g), f ). The syntax forces us

to make an unwelcome distinction.

Composition of arrows in categories lends itself well to a graphical repre-

sentation using vertices and edges. There are basically two options: objects

can be represented by vertices, and arrows by edges between them, or vice

versa:

Objects Arrows

A B Af
versus

Objects Arrows

A fB A
.

The two types of diagrams are related by topological or Poincaré duality,

where vertices become edges and edges become vertices. There are many

variations of the two schemes. Vertices are often drawn as boxes or are not

drawn at all, being replaced by their labels. Edges are often directed to allow

for a more nexible arrangement of vertices. We avoid arrowheads by agreeing

that the now is from right to left. This choice blends well with the symbolic

notation in that the graphical direction of composition,

ABCD

fgh h g f

D C B A

,

follows the direction in the term h ç g ç f . For reasons of consistency, we

should also write the types backwards: if g 6 C ± B and f 6 B ± A,

then g ç f 6 C ± A. We stick to the customary notation, however, and use

right-to-left types only for emphasis. (An alternative is to change the order

of composition: forward composition f ; g ; h blends well with left-to-right

types. We use both forward and backward composition.)

Like the symbolic notation, the diagrammatic representations have asso-

ciativity (1.1b) built in, as we are simply threading beads on a necklace. We

can further obviate the need for invoking unitality (1.1a) explicitly by agree-

ing that the identity arrow on an object A is represented by the rendition

of A. The same convention is also used in symbolic notation: the identity

on A is often written A 6 A ³ A. A distinctive advantage of diagrams over

terms is that they add vital type information. For a monoid a ç b is always

deoned. However, as composition is in general partial, our notation should

prevent us from joining arrows together incorrectly.

We have two graphical representations to choose from. But which one to

pick? Diferent communities have diferent preferences: theoreticians seem to

prefer the diagrams on the left above (e.g. as parts of commuting diagrams;

see Section 1.7.2), while hardware people seem to prefer the diagrams on
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6 Category Theory

the right (e.g. in the form of circuit diagrams). We favor the latter notation

for reasons that will become clear later.

1.2 Properties of Arrows

We now consider categorical generalizations of injective, surjective, and bi-

jective functions.

1.2.1 Mono and Epi Arrows. An arrow f 6 A ³ B is called mono if it

is left-cancelable:

f ç x1 = f ç x2 ÿ x1 = x2, (1.5a)

for all objects X and all arrows x1, x2 6 X ³ A. In Set these are the injective

functions. Dually, an arrow f 6 A ³ B is called epi if it is right-cancelable:

x1 ç f = x2 ç f ÿ x1 = x2, (1.5b)

for all objects X and all arrows x1, x2 6 B ³ X . In Set these are the surjective

functions. The inverse directions of the cancellation properties (1.5a) and

(1.5b) are Leibniz9s context rules,

x1 = x2 ÿ f ç x1 = f ç x2, (1.5c)

x1 = x2 ÿ x1 ç f = x2 ç f , (1.5d)

so implications (1.5a) and (1.5b) can both be strengthened to equivalences.

1.2.2 Split Mono and Split Epi Arrows. For an arrow f 6 A ³ B,

a post-inverse of f is an arrow k 6 A ± B such that

k ç f = idA.

In this case, f is referred to as a split mono. Dually, a pre-inverse of f is an

arrow h 6 A ± B such that

f ç h = idB.

Such an f is referred to as a split epi.

In pictures, these are arrows that annihilate each other if they touch in

the right order:

k f

A B A
=

A
and

f h

B A B
=

B
.

Observe that the identity arrows are rendered by edges.
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1.2 Properties of Arrows 7

In Set, almost every injective function has a post-inverse. The only ex-

ceptions are functions of type ' ³ A with A b ', simply because there

are no functions of type A ³ '. However, every surjective function has a

pre-inverse.

Occasionally it is useful to reinterpret categorical notions using set-theoretic

spectacles. If we partially apply the composition operator, 2 ç f or g ç 2, we

obtain maps over collections of arrows. Using these maps we can reinterpret

the notions of mono and epi. Property (1.5a) captures that f ç 2 is injective;

likewise, (1.5b) states that 2 ç f is injective:

(f ç 2) x1 = (f ç 2) x2 ÿ x1 = x2,

(2 ç f ) x1 = (2 ç f ) x2 ÿ x1 = x2.

While cancellation properties are related to injectivity, existence of a pre-

or a post-inverse are related to surjectivity:

g ç 2 injective ÿ g mono, (1.6a)

2 ç f injective ÿ f epi, (1.6b)

g ç 2 surjective ÿ g split epi, (1.6c)

2 ç f surjective ÿ f split mono. (1.6d)

The proofs of (1.6c) and (1.6d) are relegated to Exercise 1.8. The preceding

list of equivalences partially explains why there are four diferent notions,

rather than only two as in Set.

1.2.3 Isomorphisms. Two objects A and B are isomorphic, written A g

B, if there is a pair of functions f 6 A ³ B and g 6 A ± B such that

f ç g = idB and idA = g ç f . If an arrow f 6 A ³ B has both a pre- and

a post-inverse, then they coincide, and we denote them f :. In this case f is

an isomorphism, iso for short, with inverse f :, written f 6 A g B 6 f ::

f : f

A B A
=

A
and

f f :

B A B
=

B
.

In Set, the isos are exactly the bijective functions.

The relation g is an equivalence relation: it is renexive, symmetric, and

transitive. Furthermore, it is compatible with most constructions on objects.

Renexivity is established by identity arrows:

idA 6 A g A 6 idA.

Symmetry is shown by exchanging the isomorphisms:

f 6 A g B 6 f : ÿ f : 6 B g A 6 f .
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8 Category Theory

mono epi

split mono
bimorphism
mono & epi

split epi

split mono & epi split epi & mono
isomorphism

split mono & split epi

Figure 1.1 Properties of arrows.

Transitivity is established by suitably composing the witnesses:

f 6 A g B 6 f : ' g 6 B g C 6 g: ÿ g ç f 6 A g C 6 f : ç g:.

To prove that the composites are isomorphisms, we orst annihilate the inner

arrows and then the outer ones.

f : g: g f

A B C B A
=

f : f

A B A
=

A
.

The proof for the reverse direction is entirely analogous.

Figure 1.1 relates the various properties of arrows 3 an isomorphism is an

arrow that is both split mono and split epi; an arrow that is both mono and

epi is called a bimorphism. The identity has all the properties, and all the

properties are preserved by composition. Exercise 1.11 asks you to establish

the relations and to show that the inclusions are proper.

The attentive reader may have noted that categorical concepts come in

pairs. An epi in ÿ is a mono in ÿop; a split epi in ÿ is a split mono in ÿop; the

concept of an iso is self-dual; an iso in ÿ is an iso in ÿop. Duality means that

we get two concepts for the price of one. The next section provides further

evidence for the economy of expression aforded by duality.

1.3 Thinking in Terms of Arrows

A category consists of objects and arrows. However, these entities are not

treated on an equal footing: category theory puts the conceptual emphasis

on arrows. Indeed, to master the subject one has to learn to think in terms of

arrows. To illustrate, let us deone some additional infrastructure: initial and

onal objects, products and coproducts, and exponentials. In each case, the
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1.3 Thinking in Terms of Arrows 9

deoned object is characterized in terms of its relationship to other objects. In

a sense, category theory is the most social of all mathematical foundations.

1.3.1 Initial and Final Objects. Let ÿ be a category. An object 0 6 ÿ

is called initial in ÿ if, for each object A 6 ÿ, there is exactly one arrow

from the initial object 0 to A. This property is referred to as the universal

property of initial objects.

Dually, 1 6 ÿ is a onal or terminal object in ÿ if it satisoes the universal

property that, for each object A 6 ÿ, there is a unique arrow from A to 1. A

onal object in ÿ is an initial object in ÿop.

An object that is simultaneously initial and onal in ÿ is called a zero

object.

Example 1.9 (Preorders). An initial object in a preorder category is a

least element. Dually, a onal object is a greatest element. If the preorder is

a partial order, meaning the relation � is also antisymmetric, then initial

and onal objects are unique.

Example 1.10 (Sets and Structures). In Set, the empty set is initial and

any singleton set is onal. In Mon, the singleton monoid ({()}, (), ") with

() " () = () is both initial and onal, as homomorphisms have to preserve the

neutral element: the singleton monoid is a zero object.

The examples demonstrate that, in general, initial and onal objects are

not unique. They are, however, unique up to a unique isomorphism. If A

and B are both initial, then there are unique arrows of type A ³ B and

B ³ A, whose compositions are necessarily identities.

1.3.2 Products and Coproducts. A product of two objects B1 and B2

consists of an object written as B1 × B2 and a pair of projection arrows:

outl 6 B1 × B2 ³ B1 and outr 6 B1 × B2 ³ B2.

These three entities have to satisfy the following universal property: for each

object A and for each pair of arrows f1 6 A ³ B1 and f2 6 A ³ B2, there

exists an arrow f1 µ f2 6 A ³ B1 × B2 (pronounced <f1 split f2=) such that

f1 = outl ç g ' f2 = outr ç g ÿ f1 µ f2 = g, (1.7)

for all g 6 A ³ B1 × B2. The equivalence captures the existence of an arrow

satisfying the property on the left and furthermore states that f1 µ f2 is the

unique such arrow. The following commutative diagram (see Section 1.7.2)
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10 Category Theory

summarizes the type information:

B1

B1 × B2 A

B2

outl

outr

f1µf2

f1

f2

.

The dotted arrow indicates that f1µf2 is the unique arrow from A to B1 ×B2

that makes the diagram commute. Informally, the universal property states

that for anything that <looks like= a product there is a unique arrow that

factorizes the look-alike product in terms of a <real= product. Section 5.2

makes the notion of a universal construction precise.

The construction of products dualizes to coproducts, which are products

in the opposite category. The coproduct of two objects A1 and A2 consists

of an object written as A1 + A2 and a pair of injection arrows:

inl 6 A1 ³ A1 + A2 and inr 6 A2 ³ A1 + A2.

These three entities have to satisfy the following universal property: for each

object B and for each pair of arrows g1 6 A1 ³ B and g2 6 A2 ³ B, there

exists an arrow g1 ¿ g2 6 A1 + A2 ³ B (pronounced <g1 join g2=) such that

f = g1 ¿ g2 ÿ f ç inl = g1 ' f ç inr = g2, (1.8)

for all f 6 A1 + A2 ³ B. Reversing the arrows in the previous product

diagram, we obtain the corresponding diagram for coproducts:

A1

A1 + A2 B

A2

inl

g1

g1¿g2

in
r

g2

.

Remark 1.11 (Bigger Products and Coproducts). We have introduced bi-

nary products. Clearly, we can also deone ternary products, with three pro-

jection arrows, and a corresponding universal property. These can be built

by nesting binary products, with the order of composition unimportant, as
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