Nonlife Actuarial Models

Actuaries must pass exams, but more than that: they must put knowledge into practice. This coherent book supports the Society of Actuaries' short-term actuarial mathematics syllabus while emphasizing the concepts and practical application of nonlife actuarial models. A class-tested textbook for undergraduate courses in actuarial science, it is also ideal for those approaching their professional exams. Key topics covered include loss modeling, risk and ruin theory, credibility theory and applications and empirical implementation of loss models.

Revised and updated to reflect curriculum changes, this second edition includes two brand-new chapters on loss reserving and ratemaking. R replaces Excel as the computation tool used throughout – the featured R code is available on the book's webpage, as are lecture slides. Numerous examples and exercises are provided, with many questions adapted from past Society of Actuaries exams.

YIU-KUEN TSE is an Emeritus Professor with the Singapore Management University. He was a Fellow of the Society of Actuaries. He has published extensively in the areas of financial data analysis and financial risk management, including the book *Financial Mathematics for Actuaries* (third edition, 2021) which he co-authored with Wai-Sum Chan.

INTERNATIONAL SERIES ON ACTUARIAL SCIENCE

Editorial Board Christopher Daykin (Independent Consultant and Actuary) Angus Macdonald (Heriot-Watt University)

The International Series on Actuarial Science, published by Cambridge University Press in con-junction with the Institute and Faculty of Actuaries, contains textbooks for students taking courses in or related to actuarial science, as well as more advanced works designed for continuing pro-fessional development or for describing and synthesizing research. The series is a vehicle for publishing books that reflect changes and developments in the curriculum, that encourage the introduction of courses on actuarial science in universities, and that show how actuarial science can be used in all areas where there is long-term financial risk.

A complete list of books in the series can be found at www.cambridge.org/isas. Recent titles include the following:

Nonlife Actuarial Models (2nd Edition) Yiu-Kuen Tse

Quantitative Enterprise Risk Management Mary R. Hardy & David Saunders

Solutions Manual for Actuarial Mathematics for Life Contingent Risks (3rd Edition) David C. M. Dickson, Mary R. Hardy & Howard R. Waters

Actuarial Mathematics for Life Contingent Risks (3rd Edition) David C. M. Dickson, Mary R. Hardy & Howard R. Waters

Modelling Mortality with Actuarial Applications Angus S. Macdonald, Stephen J. Richards & Iain D. Currie

Claims Reserving in General Insurance David Hindley

Financial Enterprise Risk Management (2nd Edition) Paul Sweeting

Insurance Risk and Ruin (2nd Edition) David C.M. Dickson

NONLIFE ACTUARIAL MODELS

Theory, Methods and Evaluation

Second Edition

YIU-KUEN TSE Singapore Management University

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,

New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/highereducation/isbn/9781009315074 DOI: 10.1017/9781009315067

© Yiu-Kuen Tse 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2009

Second edition 2023

Printed in the United Kingdom by TJ Books Limited, Padstow, Cornwall

A catalogue record for this publication is available from the British Library.

A Cataloging-in-Publication data record for this book is available from the Library of Congress.

ISBN 978-1-009-31507-4 Hardback

Additional resources for this publication at www.cambridge.org/tse.

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Prefa	<i>page</i> x		
Prefa	xi		
Notation and Convention			
Computation Notes			
Part I Loss Models			
1	Claim-Frequency Distribution	3	
1.1	Claim Frequency, Claim Severity and Aggregate Claim	4	
1.2	Review of Statistics	4	
1.3	Some Discrete Distributions for Claim Frequency	6	
1.4	The $(a, b, 0)$ Class of Distributions	14	
1.5	Some Methods for Creating New Distributions	19	
1.6	R Laboratory	31	
1.7	Summary and Conclusions	32	
2	Claim-Severity Distribution	37	
2.1	Review of Statistics	38	
2.2	Some Continuous Distributions for Claim Severity	44	
2.3	Some Methods for Creating New Distributions	47	
2.4	Tail Properties of Claim Severity	54	
2.5	Effects of Coverage Modifications	59	
2.6	R Laboratory	71	
2.7	Summary and Conclusions	71	
3	Aggregate-Loss Models	77	
3.1	Individual Risk and Collective Risk Models	78	
3.2	Individual Risk Model	79	
3.3	Collective Risk Model	86	
3.4	Coverage Modifications and Stop-Loss Reinsurance	93	

vi	Contents				
3.5 3.6	R Laboratory Summary and Conclusions	97 98			
Part	II Risk and Ruin	103			
4	Risk Measures	105			
4.1	Uses of Risk Measures	106			
4.2	Some Premium-Based Risk Measures	107			
4.3	Axioms of Coherent Risk Measures	108			
4.4	Some Capital-Based Risk Measures	110			
4.5	More Premium-Based Risk Measures	118			
4.6	Distortion-Function Approach	122			
4.7	Wang Transform	125			
4.8	Summary and Conclusions	127			
5	Ruin Theory	131			
5.1	Discrete-Time Surplus and Events of Ruin	132			
5.2	Discrete-Time Ruin Theory	133			
5.3	Summary and Conclusions	144			
Part	Part III Credibility 147				
6	Classical Credibility	149			
6.1	Framework and Notations	149			
6.2	Full Credibility	151			
6.3	Partial Credibility	162			
6.4	Summary and Discussions	165			
7	Bühlmann Credibility	169			
7.1	Framework and Notations	170			
7.2	Variance Components	171			
7.3	Bühlmann Credibility	179			
7.4	Bühlmann–Straub Credibility	185			
7.5	Summary and Discussions	192			
8	Bayesian Approach	199			
8.1	Bayesian Inference and Estimation	200			
8.2	Conjugate Distributions	209			
8.3	Bayesian versus Bühlmann Credibility	211			
8.4	Linear Exponential Family and Exact Credibility	216			
8.5	R Laboratory	222			
8.6	Summary and Discussions	223			
9	Empirical Implementation of Credibility	228			
9.1	Empirical Bayes Method	229			

	Contents	vii
9.2	Nonparametric Estimation	230
9.3	Semiparametric Estimation	243
9.4	Parametric Estimation	244
9.5	Summary and Discussions	246
Part	IV Model Construction and Evaluation	253
10	Model Estimation and Types of Data	255
10.1	Estimation	256
10.2	Types of Data	260
10.3	Summary and Discussions	270
11	Nonparametric Model Estimation	274
11.1	Estimation with Complete Individual Data	275
11.2	Estimation with Incomplete Individual Data	282
11.3	Estimation with Grouped Data	294
11.4	R Laboratory	296
11.5	Summary and Discussions	299
12	Parametric Model Estimation	307
12.1	Methods of Moments and Percentile Matching	308
12.2	Bayesian Estimation Method	314
12.3	Maximum Likelihood Estimation Method	316
12.4	Models with Covariates	328
12.5	Modeling Joint Distribution Using Copula	336
12.6	R Laboratory	340
12.7	Summary and Discussions	341
13	Model Evaluation and Selection	350
13.1	Graphical Methods	351
13.2	Misspecification Tests and Diagnostic Checks	355
13.3	Information Criteria for Model Selection	362
13.4	R Laboratory	363
13.5	Summary and Discussions	364
14	Basic Monte Carlo Methods	370
14.1	Monte Carlo Simulation	371
14.2	Uniform Random Number Generators	372
14.3	General Random Number Generators	374
14.4	Specific Random Number Generators	383
14.3 14.5	Accuracy and Monte Carlo Sample Size	38/
14.0	P L aboratory	390
14./ 14.8	R Laboratory Summary and Discussions	393
14.0	Summary and Discussions	595

viii	Contents		
15	Applications of Monte Carlo Methods	402	
15.1	Monte Carlo Simulation for Hypothesis Test	402	
15.2	Bootstrap Estimation of <i>p</i> -Value	406	
15.3	Bootstrap Estimation of Bias and Mean Squared Error	408	
15.4	A General Framework of Bootstrap	412	
15.5	R Laboratory	413	
15.6	Summary and Discussions	415	
Part	V Loss Reserving and Ratemaking	419	
16	Loss Reserving	421	
16.1	Periods, Premiums and Reserves	421	
16.2	Three Methods of Estimating Reserves	425	
16.3	Developing Frequency and Severity Separately	432	
16.4	Discounting Loss Reserves	438	
16.5	R Laboratory	439	
16.6	Summary and Discussions	440	
17	Ratemaking	448	
17.1	Exposure, Expenses, Expected Losses and Premiums	448	
17.2	Premium Changes and Earned Premium	452	
17.3	Loss Trending	456	
17.4	Group Differentials and Their Updates	457	
17.5	Policies with Cross Categorization	459	
17.6	R Laboratory	469	
17.7	Summary and Discussions	470	
Appendix: Review of Statistics 47			
A.1	Distribution Function, Probability Density Function,		
	Probability Function and Survival Function	476	
A.2	Random Variables of the Mixed Type and Stieltjes Integral	477	
A.3	Expected Value	478	
A.4	Mean, Variance and Other Moments	479	
A.5	Conditional Probability and Bayes' Theorem	480	
A.6	Bivariate Random Variable	481	
A.7	Mean and variance of sum of random variables	483	
A.8	Moment Generating Function and Probability Generating	402	
	Function	483	
A.9	Some Discrete Distributions	485	
A.10	Some Continuous Distributions	48/	
A.11	Variance	402	
A 10	Variance Compound Distribution	492 405	
A.12		493	

Contents	ix
A.13 Convolution	495
A.14 Mixture Distribution	496
A.15 Bayesian Approach of Statistical Inference	497
A.16 Conjugate Distribution	498
A.17 Least Squares Estimation	503
A.18 Fisher Information and Cramér-Rao Inequality	505
A.19 Maximum Likelihood Estimation	508
Answers to Exercises	510
References	530
Index	532

Preface to the Second Edition

Several changes have been made to the second edition. First, I have added two chapters to cover the topics on loss reserving and ratemaking. Second, the chapter on classical credibility has been rewritten to be less dependent on the Poisson assumption. Also, part of the chapter on Bühlmann credibility has been rewritten for better integration. Third, the sections on "Excel computation notes" have been removed. I use R as the computation tool for this edition and several chapters have a section of "R laboratory." Finally, I have removed some topics from the first edition, including the topics on continuous-time ruin theory and simulation of asset prices. Lecture slides and R codes can be downloaded from the book's webpage: https://sites.google.com/view/nonlifeactuarialmodels.

Yiu-Kuen Tse Singapore Management University yktse@smu.edu.sg

Preface to the First Edition

This book is on the theory, methods, and empirical implementation of nonlife actuarial models. It is intended for use as a textbook for senior undergraduates. Users are assumed to have done one or two one-semester courses on probability theory and statistical inference, including estimation and hypothesis testing. The coverage of this book includes all the topics found in Exam C of the Society of Actuaries (Exam 4 of the Casualty Actuarial Society) as per the 2007 Basic Education Catalog. In addition, it covers some topics (such as risk measures and ruin theory) beyond what is required by these exams, and may be used by actuarial students in general.

This book is divided into four parts: loss models, risk and ruin, credibility, and model construction and evaluation. An appendix on the review of statistics is provided for the benefit of students who require a quick summary. Students may read the appendix prior to the main text if they desire, or they may use the appendix as a reference when required. In order to be self contained, the appendix covers some of the topics developed in the main text.

Some features of this book should be mentioned. First, the concepts and theories introduced are illustrated by many practical examples. Some of these examples explain the theory through numerical applications, while others develop new results. Second, several chapters of the book include a section on numerical computation using Excel. Students are encouraged to use Excel to solve some of the numerical exercises. Third, each chapter includes some exercises for practice. Many of these exercises are adapted from past exam questions of the Society of Actuaries.

I would like to thank Tao Yang for painstakingly going through the manuscript and for providing many useful comments and suggestions. Diana Gillooly has professionally guided me through the publication process with admirable patience and efficiency. Clare Dennison has performed a superb job of coordinating the copy editing. I am also grateful to the Society of Actuaries for allowing me to use its past exam questions.

xii

Preface to the First Edition

Resources are available at: www.mysmu.edu/faculty/yktse/NAM/NAM base.htm Slides in pdf format can be downloaded from this site, which will facilitate classroom teaching by instructors adopting this book. An errata file will be provided, and the solution manual for instructors is obtainable from the author on request.

Yiu-Kuen Tse Singapore Management University yktse@smu.edu.sg

Notation and Convention

- 1 Abbreviations are used in this book without periods. For example, "probability density function" is referred to as pdf (not p.d.f.) and "moment generating function" is referred to as mgf (not m.g.f.).
- 2 We do not make distinctions between a random variable and the distribution that describes the random variable. Thus, from time to time we make statements such as: "X denotes the binomial distribution."
- 3 We use calligraphic fonts to denote commonly used distributions. Discrete distributions are denoted with two alphabets and continuous distributions are denoted with one alphabet. For example, \mathcal{PN} stands for Poisson, \mathcal{BN} stands for binomial, \mathcal{N} stands for normal, and \mathcal{L} stands for lognormal.
- 4 The following conventions are generally used:
 - (a) Slanted upper case for random variables, e.g. X.
 - (b) Slanted lower case for fixed numbers, e.g. *x*.
 - (c) Slanted bold-faced upper case for vectors of random variables, e.g. X.
 - (d) Slanted bold-faced lower case for vectors of fixed numbers (observations), e.g. *x*.
 - (e) Upright bold-faced upper case for matrices of fixed numbers (observations), e.g. X.
- 5 Natural logarithm is denoted by log, not ln.

Computation Notes

- 1 All graphs in this book were produced using Matlab. The computation was performed using Gauss and R.
- 2 Some chapters in the second edition have a section of "R laboratory," where some R codes are included to illustrate the computation.
- 3 Excel resources in the first edition have been removed. They can be down-loaded from the book's web page.