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Part I
Loss Models

In this part of the book we discuss actuarial models for claim losses. The two
components of claim losses, namely, claim frequency and claim severity, are
modeled separately, and are then combined to derive the aggregateloss distri-
bution. In Chapter 1, we discuss the modeling of claim frequency, introducing
some techniques for modeling nonnegative integer-valued random variables.
Techniques for modeling continuous random variables relevant for claim sever-
ity are discussed in Chapter 2, in which we also consider the effects of coverage
modifications on claim frequency and claim severity. Chapter 3 discusses the
collective risk model and individual risk model for analyzing aggregate losses.
The techniques of convolution and recursive methods are used to compute the
aggregate-loss distributions.
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1
Claim-Frequency Distribution

This book is about modeling the claim losses of insurance policies. Our main
interest is nonlife insurance policies covering a fixed period of time, such as
vehicle insurance, workers compensation insurance and health insurance. An
important measure of claim losses is the claim frequency, which is the number
of claims in a block of insurance policies over a period of time. Though claim
frequency does not directly show the monetary losses of insurance claims, it is
an important variable in modeling the losses.
In this chapter we first briefly review some tools in modeling statistical

distributions, in particular, the moment generating function and probability
generating function. Some commonly used discrete random variables in mod-
eling claim-frequency distributions, namely, the binomial, geometric, negative
binomial and Poisson distributions, are then discussed. We introduce a family
of distributions for nonnegative, integer-valued random variables, called the
(a, b, 0) class, which includes all the four distributions aforementioned. This
class of discrete distributions have found important applications in the actu-
arial literature. Further methods of creating new nonnegative, integer-valued
random variables are introduced. In particular, we discuss the zero-modified
distribution, the (a, b, 1) class of distributions, the compound distributions and
the mixture distributions.

Learning Objectives

1 Discrete distributions for modeling claim frequency
2 Binomial, geometric, negative binomial and Poisson distributions
3 The (a, b, 0) and (a, b, 1) class of distributions
4 Compound distribution
5 Convolution
6 Mixture distribution
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4 1 Claim-Frequency Distribution

1.1 Claim Frequency, Claim Severity and Aggregate Claim

We consider a block of nonlife insurance policies with coverage over a fixed
period of time. The aggregate claim for losses of the block of policies is the
sum of the monetary losses of all the claims. The number of claims in the block
of policies is called the claim frequency, and the monetary amount of each
claim is called the claim severity or claim size. A general approach in loss
modeling is to consider claim frequency and claim severity separately. The
two variables are then combined to model the aggregate claim. Naturally claim
frequency is modeled as a nonnegative discrete random variable, while claim
severity is continuously distributed.
In this chapter we focus on the claim-frequency distribution. We discuss

some nonnegative discrete random variables that are commonly used for mod-
eling claim frequency. Some methods for constructing nonnegative discrete
random variables that are suitable for modeling claim frequency are also intro-
duced. As our focus is on short-term nonlife insurance policies, time value of
money plays a minor role. We begin with a brief review of some tools for mod-
eling statistical distributions. Further discussions on the topic can be found in
the Appendix, as well as the references therein.

1.2 Review of Statistics

Let X be a random variable with distribution function (df) FX(x), which is
defined by

FX(x) = Pr(X ≤ x). (1.1)

If FX(x) is a continuous function, X is said to be a continuous random vari-
able. Furthermore, if FX(x) is differentiable, the probability density function
(pdf) of X, denoted by fX(x), is defined as

fX(x) =
dFX(x)
dx

. (1.2)

If X can only take discrete values, it is called a discrete random variable. We
denote ΩX = {x1, x2, . . .} as the set of values X can take, called the support of
X. The probability function (pf) of a discrete random variable X, also denoted
by fX(x), is defined as

fX(x) =
{

Pr(X = x), if x ∈ ΩX,
0, otherwise. (1.3)

We assume the support of a continuous random variable to be the real line,
unless otherwise stated. The r th moment of X about zero (also called the r th
raw moment), denoted by E(X r), is defined as

E(X r) =
∫

∞

−∞

x rfX(x) dx, if X is continuous, (1.4)
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1.2 Review of Statistics 5

and
E(X r) =

∑

x∈ΩX

x rfX(x), if X is discrete. (1.5)

For convenience, we also write E(X r) as μ′r. Themoment generating function
(mgf) of X, denoted by MX(t), is a function of t defined by

MX(t) = E(e tX), (1.6)

if the expectation exists. If themgf ofX exists for t in an open interval around t =
0, the moments of X exist and can be obtained by successively differentiating
the mgf with respect to t and evaluating the result at t = 0. We observe that

M r
X(t) =

d rMX(t)
dt r

=
d r

dt r
E(etX) = E

[

d r

dt r
(etX)

]

= E(X retX), (1.7)

so that
M r

X(0) = E(X r) = μ′r. (1.8)

If X1,X2, . . . ,Xn are independently and identically distributed (iid) random
variables with mgf M(t), and X = X1 + · · · + Xn, then the mgf of X is

MX(t)=E(etX) = E(etX1 + ... + tXn)=E

( n
∏

i=1

etXi

)

=
n
∏

i=1

E(etXi ) = [M(t)]n . (1.9)

The mgf has the important property that it uniquely defines a distribution. Spe-
cifically, if two random variables have the same mgf, their distributions are
identical.1
If X is a random variable that can only take nonnegative integer values, the

probability generating function (pgf) of X, denoted by PX(t), is defined as
PX(t) = E(t X), (1.10)

if the expectation exists. The mgf and pgf are related through the equations
MX(t) = PX(et), (1.11)

and
PX(t) = MX(log t). (1.12)

Given the pgf of X, we can derive its pf. To see how this is done, note that

PX(t) =
∞
∑

x=0

t xfX(x). (1.13)

The r th order derivative of PX(t) is

P r
X(t) =

d r

dt r

(

∞
∑

x=0

t xfX(x)

)

=
∞
∑

x=r
x(x− 1) · · · (x− r + 1)t x−rfX(x). (1.14)

1 See Appendix A.8 for more details.
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6 1 Claim-Frequency Distribution

If we evaluate P r
X(t) at t = 0, all terms in the above summation vanish except

for x = r, which is r!fX(r). Hence, we have

P r
X(0) = r!fX(r), (1.15)

so that given the pgf, we can obtain the pf as

fX(r) =
P r
X(0)
r!

. (1.16)

In sum, given themgf ofX, themoments ofX can be computed through equation
(1.8). Likewise, given the pgf of a nonnegative integer-valued random variable,
its pf can be computed through equation (1.16). Thus, themgf and pgf are useful
functions for summarizing a statistical distribution.

1.3 Some Discrete Distributions for Claim Frequency

We now review some key results of four discrete random variables, namely,
binomial, geometric, negative binomial and Poisson. As these random vari-
ables can only take nonnegative integer values, they may be used for modeling
the distributions of claim frequency. The choice of a particular distribution in
practice is an empirical question to be discussed later.

1.3.1 Binomial Distribution
A random variable X has a binomial distribution with parameters n and θ,
denoted by BN (n, θ), where n is a positive integer and θ satisfies 0 < θ < 1,
if the pf of X is

fX(x) =
(

n
x

)

θx(1− θ)n−x, for x = 0, 1, . . . , n, (1.17)

where
(

n
x

)

=
n!

x!(n− x)!
. (1.18)

The mean and variance of X are

E(X ) = nθ and Var(X ) = nθ(1− θ), (1.19)

so that the variance of X is always smaller than its mean.
The mgf of X is

MX(t) = (θet + 1− θ)n, (1.20)

and its pgf is

PX(t) = (θt + 1− θ)n. (1.21)
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1.3 Some Discrete Distributions for Claim Frequency 7

The expression in equation (1.17) is the probability of obtaining x successes
in n independent trials each with probability of success θ. The distribution is
symmetric if θ = 0.5. It is positively skewed (skewed to the right) if θ < 0.5,
and is negatively skewed (skewed to the left) if θ > 0.5. When n is large, X is
approximately normally distributed. The convergence to normality is faster the
closer θ is to 0.5.
There is a recursive relationship for fX(x), which can facilitate the compu-

tation of the pf. From equation (1.17), we have fX(0) = (1 − θ)n. Now for
x = 1, . . . , n, we have

fX(x)
fX(x− 1)

=

(

n
x

)

θx(1− θ)n−x

(

n
x− 1

)

θx−1(1− θ)n−x+1
=
(n− x + 1)θ
x(1− θ)

, (1.22)

so that

fX(x) =
[

(n− x + 1)θ
x(1− θ)

]

fX(x− 1). (1.23)

Example 1.1 Plot the pf of the binomial distribution for n = 10, and θ = 0.2,
0.4, 0.6 and 0.8.

Solution 1.1 Figure 1.1 plots the pf of BN (n, θ) for θ = 0.2, 0.4, 0.6 and 0.8,
with n = 10.
It can be clearly seen that the binomial distribution is skewed to the right for

θ = 0.2 and skewed to the left for θ = 0.8.

1.3.2 Geometric Distribution
A nonnegative discrete random variable X has a geometric distribution with
parameter θ for 0 < θ < 1, denoted by GM(θ), if its pf is given by

fX(x) = θ(1− θ)x, for x = 0, 1, . . . . (1.24)

The mean and variance of X are

E(X) =
1− θ
θ

and Var(X) =
1− θ
θ2

, (1.25)

so that, in contrast to the binomial distribution, the variance of a geometric
distribution is always larger than its mean.
The expression in equation (1.24) is the probability of having x failures prior

to the first success in a sequence of independent Bernoulli trials with probability
of success θ.
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8 1 Claim-Frequency Distribution
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Figure 1.1 Probability function of BN (10, θ)

The mgf of X is

MX(t) =
θ

1− (1− θ)et
, (1.26)

and its pgf is

PX(t) =
θ

1− (1− θ)t
. (1.27)

The pf of X is decreasing in x. It satisfies the following recursive relationship

fX(x) = (1− θ) fX(x− 1), (1.28)

for x = 1, 2, . . ., with starting value fX(0) = θ.

1.3.3 Negative Binomial Distribution
A nonnegative discrete random variable X has a negative binomial distribution
with parameters r and θ, denoted by NB(r, θ), if the pf of X is

fX(x) =
(

x + r− 1
r− 1

)

θr(1− θ)x, for x = 0, 1, . . . , (1.29)

where r is a positive integer and θ satisfies 0 < θ < 1. The geometric distribution
is a special case of the negative binomial distribution with r= 1. We may inter-
pret the expression in equation (1.29) as the probability of getting x failures
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1.3 Some Discrete Distributions for Claim Frequency 9

prior to the r th success in a sequence of independent Bernoulli trials with
probability of success θ. Thus, NB(r, θ) is just the sum of r independently
distributed GM(θ) variates. Hence, using equation (1.25), we can conclude
that if X is distributed as NB(r, θ) its mean and variance are

E(X) =
r(1− θ)

θ
and Var(X) =

r(1− θ)
θ2

, (1.30)

so that its variance is always larger than its mean.
Furthermore, using the results in equations (1.9), (1.26) and (1.27), we obtain

the mgf of NB(r, θ) as

MX(t) =
[

θ
1− (1− θ)et

]r

, (1.31)

and its pgf as

PX(t) =
[

θ
1− (1− θ)t

]r

. (1.32)

Note that the binomial coefficient in equation (1.29) can be written as
(

x + r− 1
r− 1

)

=
(x + r− 1)!
(r− 1)!x!

=
(x + r− 1)(x + r− 2) · · · (r + 1)r

x!
. (1.33)

The expression in the last line of the above equation is well defined for any
number r > 0 (not necessarily an integer) and any nonnegative integer x.2 Thus,
if we define

(

x + r− 1
r− 1

)

=
(x + r− 1)(x + r− 2) · · · (r + 1)r

x!
, (1.34)

we can use equation (1.29) as a pf even when r is not an integer. Indeed it can
be verified that

∞
∑

x=0

(

x + r− 1
r− 1

)

θr(1− θ)x = 1, (1.35)

for r > 0 and 0 < θ < 1, so that the extension of the parameter r of the negative
binomial distribution to any positive number is meaningful. We shall adopt this
extension in any future applications.
The recursive formula of the pf follows from the result

fX(x)
fX(x− 1)

=

(

x + r− 1
r− 1

)

θr(1− θ)x

(

x + r− 2
r− 1

)

θr(1− θ)x−1
=
(x + r− 1)(1− θ)

x
, (1.36)

2 As factorials are defined only for nonnegative integers, the expression in the first line of equation
(1.33) is not defined if r is not an integer.
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10 1 Claim-Frequency Distribution

Table 1.1. Results of Example 1.2

x r = 0.5 r = 1.0 r = 1.5 r = 2.0

0 0.6325 0.4000 0.2530 0.1600
1 0.1897 0.2400 0.2277 0.1920
2 0.0854 0.1440 0.1708 0.1728
3 0.0427 0.0864 0.1195 0.1382

so that

fX(x) =
[

(x + r− 1)(1− θ)
x

]

fX(x− 1), (1.37)

with starting value

fX(0) = θr. (1.38)

Example 1.2 Using the recursion formula, calculate the pf of the negative
binomial distribution with r = 0.5, 1, 1.5 and 2, and θ = 0.4, for x = 0, 1,
2 and 3. What is the mode of the negative binomial distribution?

Solution 1.2 From the recursion formula in equation (1.37), we have

fX(x) =
[

0.6(x + r− 1)
x

]

fX(x− 1), for x = 1, 2, . . . ,

with starting value fX(0) = (0.4)r. We summarize the results in Table 1.1.
Note that the modes for r = 0.5, 1 and 1.5 are 0, and that for r = 2 is 1. To

compute the mode in general, we note that, from equation (1.37),

fX(x) > fX(x− 1) if and only if
(x + r− 1)(1− θ)

x
> 1,

and the latter inequality is equivalent to

x <
(r− 1)(1− θ)

θ
.

Therefore, the mode of the negative binomial distribution is equal to the non-
negative integer part of (r − 1)(1 − θ)/θ. We can verify this result from
Table 1.1. For example, when r = 2,

(r− 1)(1− θ)
θ

=
0.6
0.4

= 1.5,

and its integer part (the mode) is 1.
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