Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Prologue</td>
<td>xix</td>
</tr>
<tr>
<td>1 ■ Stern-Gerlach Experiments</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Stern-Gerlach Experiment</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Experiment 1</td>
<td>5</td>
</tr>
<tr>
<td>1.1.2 Experiment 2</td>
<td>6</td>
</tr>
<tr>
<td>1.1.3 Experiment 3</td>
<td>7</td>
</tr>
<tr>
<td>1.1.4 Experiment 4</td>
<td>8</td>
</tr>
<tr>
<td>1.2 Quantum State Vectors</td>
<td>10</td>
</tr>
<tr>
<td>1.2.1 Analysis of Experiment 1</td>
<td>16</td>
</tr>
<tr>
<td>1.2.2 Analysis of Experiment 2</td>
<td>16</td>
</tr>
<tr>
<td>1.2.3 Superposition States</td>
<td>19</td>
</tr>
<tr>
<td>1.3 Matrix Notation</td>
<td>22</td>
</tr>
<tr>
<td>1.4 General Quantum Systems</td>
<td>25</td>
</tr>
<tr>
<td>1.5 Postulates</td>
<td>27</td>
</tr>
<tr>
<td>Summary</td>
<td>28</td>
</tr>
<tr>
<td>Problems</td>
<td>29</td>
</tr>
<tr>
<td>Resources</td>
<td>32</td>
</tr>
<tr>
<td>Activities</td>
<td>32</td>
</tr>
<tr>
<td>Further Reading</td>
<td>33</td>
</tr>
<tr>
<td>2 ■ Operators and Measurement</td>
<td>34</td>
</tr>
<tr>
<td>2.1 Operators, Eigenvalues, and Eigenvectors</td>
<td>34</td>
</tr>
<tr>
<td>2.1.1 Matrix Representation of Operators</td>
<td>37</td>
</tr>
<tr>
<td>2.1.2 Diagonalization of Operators</td>
<td>38</td>
</tr>
<tr>
<td>2.2 New Operators</td>
<td>41</td>
</tr>
<tr>
<td>2.2.1 Spin Component in a General Direction</td>
<td>41</td>
</tr>
<tr>
<td>2.2.2 Hermitian Operators</td>
<td>44</td>
</tr>
<tr>
<td>2.2.3 Projection Operators</td>
<td>44</td>
</tr>
<tr>
<td>2.2.4 Analysis of Experiments 3 and 4</td>
<td>47</td>
</tr>
<tr>
<td>2.3 Measurement</td>
<td>50</td>
</tr>
<tr>
<td>2.4 Commuting Observables</td>
<td>54</td>
</tr>
<tr>
<td>2.5 Uncertainty Principle</td>
<td>56</td>
</tr>
<tr>
<td>2.6 S^2 Operator</td>
<td>57</td>
</tr>
<tr>
<td>2.7 Spin-1 System</td>
<td>59</td>
</tr>
</tbody>
</table>
Contents

2.8 General Quantum Systems 62
 Summary 63
 Problems 64
 Resources 67
 Activities 67

3 Schrödinger Time Evolution 68
 3.1 Schrödinger Equation 68
 3.2 Spin Precession 72
 3.2.1 Magnetic Field in the z-Direction 72
 3.2.2 Magnetic Field in a General Direction 78
 3.3 Neutrino Oscillations 84
 3.4 Time-Dependent Hamiltonians 87
 3.4.1 Magnetic Resonance 87
 3.4.2 Light-Matter Interactions 92
 Summary 93
 Problems 94
 Resources 96
 Activities 96
 Further Reading 96

4 Quantum Spookiness 97
 4.1 Einstein-Podolsky-Rosen Paradox 97
 4.2 Schrödinger Cat Paradox 102
 Problems 105
 Resources 106
 Further Reading 106

5 Quantized Energies: Particle in a Box 107
 5.1 Spectroscopy 107
 5.2 Energy Eigenvalue Equation 110
 5.3 The Wave Function 112
 5.4 Infinite Square Well 119
 5.5 Finite Square Well 128
 5.6 Compare and Contrast 133
 5.6.1 Wave Function Curvature 133
 5.6.2 Nodes 135
 5.6.3 Barrier Penetration 135
 5.6.4 Inversion Symmetry and Parity 136
 5.6.5 Orthonormality 136
 5.6.6 Completeness 137
 5.7 Superposition States and Time Dependence 137
 5.8 Modern Application: Quantum Wells and Dots 146
 5.9 Asymmetric Square Well: Sneak Peek at Perturbations 147
 5.10 Fitting Energy Eigenstates by Eye or by Computer 150
 5.10.1 Qualitative (Eyeball) Solutions 150
5.10.2 Numerical Solutions 151
5.10.3 General Potential Wells 154
Summary 154
Problems 156
Resources 159
Activities 159
Further Reading 160

6 ■ Unbound States 161
6.1 Free Particle Eigenstates 161
 6.1.1 Energy Eigenstates 161
 6.1.2 Momentum Eigenstates 163
6.2 Wave Packets 168
 6.2.1 Discrete Superposition 168
 6.2.2 Continuous Superposition 171
6.3 Uncertainty Principle 176
 6.3.1 Energy Estimation 180
6.4 Unbound States and Scattering 181
6.5 Tunneling Through Barriers 188
6.6 Atom Interferometry 192
Summary 197
Problems 197
Resources 201
Activities 201
Further Reading 201

7 ■ Angular Momentum 202
7.1 Separating Center-of-Mass and Relative Motion 204
7.2 Energy Eigenvalue Equation in Spherical Coordinates 208
7.3 Angular Momentum 210
 7.3.1 Classical Angular Momentum 210
 7.3.2 Quantum Mechanical Angular Momentum 210
7.4 Separation of Variables: Spherical Coordinates 215
7.5 Motion of a Particle on a Ring 218
 7.5.1 Azimuthal Solution 220
 7.5.2 Quantum Measurements on a Particle Confined to a Ring 223
 7.5.3 Superposition States 224
7.6 Motion on a Sphere 227
 7.6.1 Series Solution of Legendre’s Equation 228
 7.6.2 Associated Legendre Functions 233
 7.6.3 Energy Eigenvalues of a Rigid Rotor 236
 7.6.4 Spherical Harmonics 237
 7.6.5 Visualization of Spherical Harmonics 240
Contents

Summary 245
Problems 245
Resources 249
Activities 249

8 Hydrogen Atom 250
8.1 The Radial Eigenvalue Equation 250
8.2 Solving the Radial Equation 252
8.2.1 Asymptotic Solutions to the Radial Equation 252
8.2.2 Series Solution to the Radial Equation 253
8.3 Hydrogen Energies and Spectrum 256
8.4 The Radial Wave Functions 261
8.5 The Full Hydrogen Wave Functions 263
8.6 Superposition States 270
Summary 272
Problems 272
Resources 274
Activities 274
Further Reading 274

9 Harmonic Oscillator 275
9.1 Classical Harmonic Oscillator 275
9.2 Quantum Mechanical Harmonic Oscillator 277
9.3 Wave Functions 284
9.4 Dirac Notation 289
9.5 Matrix Representations 293
9.6 Momentum Space Wave Function 296
9.7 The Uncertainty Principle 298
9.8 Time Dependence 300
9.9 Molecular Vibrations 305
Summary 307
Problems 308
Resources 311
Activities 311
Further Reading 311

10 Perturbation Theory 312
10.1 Spin-1/2 Example 313
10.2 General Two-Level Example 317
10.3 Nondegenerate Perturbation Theory 319
10.3.1 First-Order Energy Correction 320
10.3.2 First-Order State Vector Correction 324
10.4 Second-Order Nondegenerate Perturbation Theory 329
10.5 Degenerate Perturbation Theory 336
10.6 More Examples 343
Contents

10.6.1 Harmonic Oscillator 343
10.6.2 Stark Effect in Hydrogen 346
Summary 351
Problems 352

11 Hyperfine Structure and the Addition of Angular Momenta 355
11.1 Hyperfine Interaction 355
11.2 Angular Momentum Review 357
11.3 Angular Momentum Ladder Operators 359
11.4 Diagonalization of the Hyperfine Perturbation 361
11.5 The Coupled Basis 365
11.6 Addition of Generalized Angular Momenta 370
11.7 Angular Momentum in Atoms and Spectroscopic Notation 377
Summary 377
Problems 379
Resources 381
Activities 381
Further Reading 381

12 Perturbation of Hydrogen 382
12.1 Hydrogen Energy Levels 382
12.2 Fine Structure of Hydrogen 386
12.2.1 Relativistic Correction 386
12.2.2 Spin-Orbit Coupling 388
12.3 Zeeman Effect 393
12.3.1 Zeeman Effect without Spin 394
12.3.2 Zeeman Effect with Spin 396
12.3.2.1 Weak magnetic field 396
12.3.2.2 Strong magnetic field 402
12.3.2.3 Intermediate magnetic field 403
12.3.3 Zeeman Perturbation of the 1s Hyperfine Structure 405
Summary 407
Problems 407
Resources 409
Activities 409
Further Reading 409

13 Identical Particles 410
13.1 Two Spin-1/2 Particles 410
13.2 Two Identical Particles in One Dimension 414
13.2.1 Two-Particle Ground State 415
13.2.2 Two-Particle Excited State 416
13.2.3 Visualization of States 417
13.2.4 Exchange Interaction 420
Table of Contents

13.2.5 Consequences of the Symmetrization Postulate 421

13.3 Interacting Particles 423

13.4 Example: The Helium Atom 427
 13.4.1 Helium Ground State 428
 13.4.2 Helium Excited States 431

13.5 The Periodic Table 434

13.6 Example: The Hydrogen Molecule 437
 13.6.1 The Hydrogen Molecular Ion H_2^+ 438
 13.6.2 The Hydrogen Molecule H_2 440

Summary 442

Problems 442

Resources 444

Further Reading 444

14 Time-Dependent Perturbation Theory 445

14.1 Transition Probability 445

14.2 Harmonic Perturbation 450

14.3 Electric Dipole Interaction 454
 14.3.1 Einstein Model: Broadband Excitation 456
 14.3.2 Laser Excitation 460

14.4 Selection Rules 462

Summary 466

Problems 467

Resources 468

Further Reading 468

15 Periodic Systems 469

15.1 The Energy Eigenvalues and Eigenstates of a Periodic Chain of Wells 471
 15.1.1 A Two-Well Chain 471
 15.1.2 N-Well Chain 473

15.2 Boundary Conditions and the Allowed Values of k 476

15.3 The Brillouin Zones 478

15.4 Multiple Bands from Multiple Atomic Levels 478

15.5 Bloch’s Theorem and the Molecular States 480

15.6 Molecular Wave Functions—a Gallery 482

15.7 The Density of States 484

15.8 Calculation of the Model Parameters 486
 15.8.1 LCAO Summary 488

15.9 The Kronig-Penney Model 489

15.10 Practical Applications: Metals, Insulators, and Semiconductors 491

15.11 Effective Mass 494

15.12 Direct and Indirect Band Gaps 496

15.13 New Directions—Low-Dimensional Carbon 497
Contents

Summary 498
Problems 499
Resources 500
Activities 500
Further Reading 500

16 Modern Applications of Quantum Mechanics 502

16.1 Manipulating Atoms with Quantum Mechanical Forces 502
 16.1.1 Magnetic Trapping 502
 16.1.2 Laser Cooling 506

16.2 Quantum Information Processing 514
 16.2.1 Quantum Bits—Qubits 515
 16.2.2 Quantum Gates 518
 16.2.3 Quantum Teleportation 524

Summary 526
Problems 527
Resources 528
Further Reading 528

Appendix A: Probability 529
Appendix B: Complex Numbers 533
Appendix C: Matrices 537
Appendix D: Waves and Fourier Analysis 541
Appendix E: Separation of Variables 547
Appendix F: Integrals 549
Appendix G: Physical Constants 551

Index 553