Quantum Mechanics
A Paradigms Approach

This popular undergraduate quantum mechanics textbook is now available in a more affordable printing from Cambridge University Press. Unlike many other books on quantum mechanics, this text begins by examining experimental quantum phenomena such as the Stern-Gerlach experiment and spin measurements, using them as the basis for developing the theoretical principles of quantum mechanics. Dirac notation is developed from the outset, offering an intuitive and powerful mathematical toolset for calculation, and familiarizing students with this important notational system. This non-traditional approach is designed to deepen students’ conceptual understanding of the subject, and has been extensively class tested. Suitable for undergraduate physics students, worked examples are included throughout and end of chapter problems act to reinforce and extend important concepts. Additional activities for students are provided online, including interactive simulations of Stern-Gerlach experiments, and a fully worked solutions manual is available for instructors.

David H. McIntyre is Professor of Physics at Oregon State University, where he has been a faculty member since 1989. He is one of the original developers of the Paradigms in Physics educational program. His other teaching interests include optical physics, computational physics, and computer interfacing. His laboratory research interests are in laser spectroscopy and optical physics.
Quantum Mechanics

A Paradigms Approach

David H. McIntyre

Oregon State University
Brief Contents

1 Stern-Gerlach Experiments 1
2 Operators and Measurement 34
3 Schrödinger Time Evolution 68
4 Quantum Spookiness 97
5 Quantized Energies: Particle in a Box 107
6 Unbound States 161
7 Angular Momentum 202
8 Hydrogen Atom 250
9 Harmonic Oscillator 275
10 Perturbation Theory 312
11 Hyperfine Structure and the Addition of Angular Momenta 355
12 Perturbation of Hydrogen 382
13 Identical Particles 410
14 Time-Dependent Perturbation Theory 445
15 Periodic Systems 469
16 Modern Applications of Quantum Mechanics 502
Appendices 529
Index 553
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Prologue</td>
<td>xix</td>
</tr>
<tr>
<td>1 Stern-Gerlach Experiments</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Stern-Gerlach Experiment</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Experiment 1</td>
<td>5</td>
</tr>
<tr>
<td>1.1.2 Experiment 2</td>
<td>6</td>
</tr>
<tr>
<td>1.1.3 Experiment 3</td>
<td>7</td>
</tr>
<tr>
<td>1.1.4 Experiment 4</td>
<td>8</td>
</tr>
<tr>
<td>1.2 Quantum State Vectors</td>
<td>10</td>
</tr>
<tr>
<td>1.2.1 Analysis of Experiment 1</td>
<td>16</td>
</tr>
<tr>
<td>1.2.2 Analysis of Experiment 2</td>
<td>16</td>
</tr>
<tr>
<td>1.2.3 Superposition States</td>
<td>19</td>
</tr>
<tr>
<td>1.3 Matrix Notation</td>
<td>22</td>
</tr>
<tr>
<td>1.4 General Quantum Systems</td>
<td>25</td>
</tr>
<tr>
<td>1.5 Postulates</td>
<td>27</td>
</tr>
<tr>
<td>Summary</td>
<td>28</td>
</tr>
<tr>
<td>Problems</td>
<td>29</td>
</tr>
<tr>
<td>Resources</td>
<td>32</td>
</tr>
<tr>
<td>Activities</td>
<td>32</td>
</tr>
<tr>
<td>Further Reading</td>
<td>33</td>
</tr>
<tr>
<td>2 Operators and Measurement</td>
<td>34</td>
</tr>
<tr>
<td>2.1 Operators, Eigenvalues, and Eigenvectors</td>
<td>34</td>
</tr>
<tr>
<td>2.1.1 Matrix Representation of Operators</td>
<td>37</td>
</tr>
<tr>
<td>2.1.2 Diagonalization of Operators</td>
<td>38</td>
</tr>
<tr>
<td>2.2 New Operators</td>
<td>41</td>
</tr>
<tr>
<td>2.2.1 Spin Component in a General Direction</td>
<td>41</td>
</tr>
<tr>
<td>2.2.2 Hermitian Operators</td>
<td>44</td>
</tr>
<tr>
<td>2.2.3 Projection Operators</td>
<td>44</td>
</tr>
<tr>
<td>2.2.4 Analysis of Experiments 3 and 4</td>
<td>47</td>
</tr>
<tr>
<td>2.3 Measurement</td>
<td>50</td>
</tr>
<tr>
<td>2.4 Commuting Observables</td>
<td>54</td>
</tr>
<tr>
<td>2.5 Uncertainty Principle</td>
<td>56</td>
</tr>
<tr>
<td>2.6 S² Operator</td>
<td>57</td>
</tr>
<tr>
<td>2.7 Spin-1 System</td>
<td>59</td>
</tr>
</tbody>
</table>
2.8 General Quantum Systems 62
Summary 63
Problems 64
Resources 67
Activities 67

3 ■ Schrödinger Time Evolution 68
3.1 Schrödinger Equation 68
3.2 Spin Precession 72
3.2.1 Magnetic Field in the z-Direction 72
3.2.2 Magnetic Field in a General Direction 78
3.3 Neutrino Oscillations 84
3.4 Time-Dependent Hamiltonians 87
3.4.1 Magnetic Resonance 87
3.4.2 Light-Matter Interactions 92
Summary 93
Problems 94
Resources 96
Activities 96
Further Reading 96

4 ■ Quantum Spookiness 97
4.1 Einstein-Podolsky-Rosen Paradox 97
4.2 Schrödinger Cat Paradox 102
Problems 105
Resources 106
Further Reading 106

5 ■ Quantized Energies: Particle in a Box 107
5.1 Spectroscopy 107
5.2 Energy Eigenvalue Equation 110
5.3 The Wave Function 112
5.4 Infinite Square Well 119
5.5 Finite Square Well 128
5.6 Compare and Contrast 133
5.6.1 Wave Function Curvature 133
5.6.2 Nodes 135
5.6.3 Barrier Penetration 135
5.6.4 Inversion Symmetry and Parity 136
5.6.5 Orthonormality 136
5.6.6 Completeness 137
5.7 Superposition States and Time Dependence 137
5.8 Modern Application: Quantum Wells and Dots 146
5.9 Asymmetric Square Well: Sneak Peek at Perturbations 147
5.10 Fitting Energy Eigenstates by Eye or by Computer 150
5.10.1 Qualitative (Eyeball) Solutions 150
Contents

5.10.2 Numerical Solutions 151
5.10.3 General Potential Wells 154
Summary 154
Problems 156
Resources 159
Activities 159
Further Reading 160

6 ■ Unbound States 161
6.1 Free Particle Eigenstates 161
6.1.1 Energy Eigenstates 161
6.1.2 Momentum Eigenstates 163
6.2 Wave Packets 168
6.2.1 Discrete Superposition 168
6.2.2 Continuous Superposition 171
6.3 Uncertainty Principle 176
6.3.1 Energy Estimation 180
6.4 Unbound States and Scattering 181
6.5 Tunneling Through Barriers 188
6.6 Atom Interferometry 192
Summary 197
Problems 197
Resources 201
Activities 201
Further Reading 201

7 ■ Angular Momentum 202
7.1 Separating Center-of-Mass and Relative Motion 204
7.2 Energy Eigenvalue Equation in Spherical Coordinates 208
7.3 Angular Momentum 210
7.3.1 Classical Angular Momentum 210
7.3.2 Quantum Mechanical Angular Momentum 210
7.4 Separation of Variables: Spherical Coordinates 215
7.5 Motion of a Particle on a Ring 218
7.5.1 Azimuthal Solution 220
7.5.2 Quantum Measurements on a Particle Confined to a Ring 223
7.5.3 Superposition States 224
7.6 Motion on a Sphere 227
7.6.1 Series Solution of Legendre's Equation 228
7.6.2 Associated Legendre Functions 233
7.6.3 Energy Eigenvalues of a Rigid Rotor 236
7.6.4 Spherical Harmonics 237
7.6.5 Visualization of Spherical Harmonics 240
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Hydrogen Atom</td>
<td>250</td>
</tr>
<tr>
<td>8.1</td>
<td>The Radial Eigenvalue Equation</td>
<td>250</td>
</tr>
<tr>
<td>8.2</td>
<td>Solving the Radial Equation</td>
<td>252</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Asymptotic Solutions to the Radial Equation</td>
<td>252</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Series Solution to the Radial Equation</td>
<td>253</td>
</tr>
<tr>
<td>8.3</td>
<td>Hydrogen Energies and Spectrum</td>
<td>256</td>
</tr>
<tr>
<td>8.4</td>
<td>The Radial Wave Functions</td>
<td>261</td>
</tr>
<tr>
<td>8.5</td>
<td>The Full Hydrogen Wave Functions</td>
<td>263</td>
</tr>
<tr>
<td>8.6</td>
<td>Superposition States</td>
<td>270</td>
</tr>
<tr>
<td>9</td>
<td>Harmonic Oscillator</td>
<td>275</td>
</tr>
<tr>
<td>9.1</td>
<td>Classical Harmonic Oscillator</td>
<td>275</td>
</tr>
<tr>
<td>9.2</td>
<td>Quantum Mechanical Harmonic Oscillator</td>
<td>277</td>
</tr>
<tr>
<td>9.3</td>
<td>Wave Functions</td>
<td>284</td>
</tr>
<tr>
<td>9.4</td>
<td>Dirac Notation</td>
<td>289</td>
</tr>
<tr>
<td>9.5</td>
<td>Matrix Representations</td>
<td>293</td>
</tr>
<tr>
<td>9.6</td>
<td>Momentum Space Wave Function</td>
<td>296</td>
</tr>
<tr>
<td>9.7</td>
<td>The Uncertainty Principle</td>
<td>298</td>
</tr>
<tr>
<td>9.8</td>
<td>Time Dependence</td>
<td>300</td>
</tr>
<tr>
<td>9.9</td>
<td>Molecular Vibrations</td>
<td>305</td>
</tr>
<tr>
<td>10</td>
<td>Perturbation Theory</td>
<td>312</td>
</tr>
<tr>
<td>10.1</td>
<td>Spin-1/2 Example</td>
<td>313</td>
</tr>
<tr>
<td>10.2</td>
<td>General Two-Level Example</td>
<td>317</td>
</tr>
<tr>
<td>10.3</td>
<td>Nondegenerate Perturbation Theory</td>
<td>319</td>
</tr>
<tr>
<td>10.3.1</td>
<td>First-Order Energy Correction</td>
<td>320</td>
</tr>
<tr>
<td>10.3.2</td>
<td>First-Order State Vector Correction</td>
<td>324</td>
</tr>
<tr>
<td>10.4</td>
<td>Second-Order Nondegenerate Perturbation Theory</td>
<td>329</td>
</tr>
<tr>
<td>10.5</td>
<td>Degenerate Perturbation Theory</td>
<td>336</td>
</tr>
<tr>
<td>10.6</td>
<td>More Examples</td>
<td>343</td>
</tr>
</tbody>
</table>
10.6.1 Harmonic Oscillator 343

10.6.2 Stark Effect in Hydrogen 346

Summary 351

Problems 352

11 Hyperfine Structure and the Addition of Angular Momenta

11.1 Hyperfine Interaction 355

11.2 Angular Momentum Review 357

11.3 Angular Momentum Ladder Operators 359

11.4 Diagonalization of the Hyperfine Perturbation 361

11.5 The Coupled Basis 365

11.6 Addition of Generalized Angular Momenta 370

11.7 Angular Momentum in Atoms and Spectroscopic Notation 377

Summary 377

Problems 379

Resources 381

Activities 381

Further Reading 381

12 Perturbation of Hydrogen

12.1 Hydrogen Energy Levels 382

12.2 Fine Structure of Hydrogen 386

12.2.1 Relativistic Correction 386

12.2.2 Spin-Orbit Coupling 388

12.3 Zeeman Effect 393

12.3.1 Zeeman Effect without Spin 394

12.3.2 Zeeman Effect with Spin 396

12.3.2.1 Weak magnetic field 396

12.3.2.2 Strong magnetic field 402

12.3.2.3 Intermediate magnetic field 403

12.3.3 Zeeman Perturbation of the 1s Hyperfine Structure 405

Summary 407

Problems 407

Resources 409

Activities 409

Further Reading 409

13 Identical Particles

13.1 Two Spin-1/2 Particles 410

13.2 Two Identical Particles in One Dimension 414

13.2.1 Two-Particle Ground State 415

13.2.2 Two-Particle Excited State 416

13.2.3 Visualization of States 417

13.2.4 Exchange Interaction 420
Contents

13.2.5 Consequences of the Symmetrization Postulate 421
13.3 Interacting Particles 423
13.4 Example: The Helium Atom 427
 13.4.1 Helium Ground State 428
 13.4.2 Helium Excited States 431
13.5 The Periodic Table 434
13.6 Example: The Hydrogen Molecule 437
 13.6.1 The Hydrogen Molecular Ion H_2^+ 438
 13.6.2 The Hydrogen Molecule H_2 440
Summary 442
Problems 442
Resources 444
Further Reading 444

14 Time-Dependent Perturbation Theory 445
14.1 Transition Probability 445
14.2 Harmonic Perturbation 450
14.3 Electric Dipole Interaction 454
 14.3.1 Einstein Model: Broadband Excitation 456
 14.3.2 Laser Excitation 460
14.4 Selection Rules 462
Summary 466
Problems 467
Resources 468
Further Reading 468

15 Periodic Systems 469
15.1 The Energy Eigenvalues and Eigenstates of a Periodic Chain of Wells 471
 15.1.1 A Two-Well Chain 471
 15.1.2 N-Well Chain 473
15.2 Boundary Conditions and the Allowed Values of k 476
15.3 The Brillouin Zones 478
15.4 Multiple Bands from Multiple Atomic Levels 478
15.5 Bloch’s Theorem and the Molecular States 480
15.6 Molecular Wave Functions—a Gallery 482
15.7 The Density of States 484
15.8 Calculation of the Model Parameters 486
 15.8.1 LCAO Summary 488
15.9 The Kronig-Penney Model 489
15.10 Practical Applications: Metals, Insulators, and Semiconductors 491
15.11 Effective Mass 494
15.12 Direct and Indirect Band Gaps 496
15.13 New Directions—Low-Dimensional Carbon 497
Contents

Summary 498
Problems 499
Resources 500
Activities 500
Further Reading 500

16 Modern Applications of Quantum Mechanics 502

16.1 Manipulating Atoms with Quantum Mechanical Forces 502
16.1.1 Magnetic Trapping 502
16.1.2 Laser Cooling 506
16.2 Quantum Information Processing 514
16.2.1 Quantum Bits—Qubits 515
16.2.2 Quantum Gates 518
16.2.3 Quantum Teleportation 524
Summary 526
Problems 527
Resources 528
Further Reading 528

Appendix A: Probability 529
Appendix B: Complex Numbers 533
Appendix C: Matrices 537
Appendix D: Waves and Fourier Analysis 541
Appendix E: Separation of Variables 547
Appendix F: Integrals 549
Appendix G: Physical Constants 551

Index 553
Preface

This text is designed to introduce undergraduates at the junior and senior levels to quantum mechanics. The text is an outgrowth of the new physics major curriculum developed by the Paradigms in Physics program at Oregon State University. This new curriculum distributes material from the subdisciplines throughout the two upper-division years and provides students with a more gradual transition between introductory and advanced levels. We have also incorporated and developed modern pedagogical strategies to help improve student learning. This text covers the quantum mechanical aspects of our curriculum in a way that can also be used in traditional curricula, but that still preserves the advantages of the Paradigms approach to the ordering of materials and the use of student engagement activities.

PARADIGMS PROGRAM

The Paradigms project began in 1997, when the Department of Physics at Oregon State University began an extensive revision of the upper-division physics major. In an effort to encourage students to draw connections between the subdisciplines of physics, the structure of the Paradigms has been crafted to mimic the organization of expert physics knowledge. Students are presented with a model of how physicists organize their understanding of physical phenomena and problem solving. Each of the nine short junior-year Paradigms courses focuses on a specific paradigm or class of physics problems that serves as the centerpiece of the course and on which different tools and skills are built. In the senior year, students resume a more traditional curriculum, taking six capstone courses in the traditional disciplines. This curriculum incorporates a diverse set of student activities that allow students to stay actively engaged in the classroom and to work together in constructing their understanding of physics. Computer resources are used frequently to help students visualize the systems they are studying.

CONTENT AND APPROACH

Quantum mechanics is integrated into four of the junior-year Paradigms courses and one senior-year capstone course at Oregon State University. This text includes all the quantum mechanics topics covered in those five courses. We adopt a "spins-first" approach by introducing quantum mechanics through the analysis of sequential Stern-Gerlach spin measurements. This approach is based upon previous presentations of spin systems by Feynman, Leighton, and Sands; Cohen-Tannoudji, Diu, and Laloe; Sakurai; and Townsend. The aim of the spins-first approach is twofold: (1) To immediately immerse students in the inherently quantum mechanical aspects of physics by focusing on simple measurements that have no classical explanation, and (2) To give students early and extensive experience with the mechanics of quantum mechanics in the forms of Dirac and matrix notation.
xvi Preface

The simplicity of the spin-1/2 and spin-1 systems allows the students to focus on these new features, which run counter to classical mechanics.

The first three chapters of this text deal exclusively with spin systems and extensions to general two- and three-state quantum mechanical systems. The basic postulates of quantum mechanics are illustrated through their manifestation in the Stern-Gerlach experiments. After these three chapters, students have the tools to tackle any quantum mechanical problem presented in Dirac or matrix notation. After a brief interlude into quantum spookiness (the EPR Paradox and Schrödinger’s cat) in Chapter 4, we tackle the traditional wave function aspects of quantum mechanics. We present several quantum systems—a particle in a box, on a ring, on a sphere, the hydrogen atom, and the harmonic oscillator—and emphasize their common features and their connections to the basic postulates. The differential equations of angular momentum and the hydrogen atom radial problem are solved in detail to expose students to the rigor of series solutions, though we stress that these are again eigenvalue equations, no different in principle from the spin eigenvalue equations. Whenever possible, we continue the use of Dirac notation and matrix notation learned in the spin chapters, emphasizing the importance of fluency in multiple representations. We build upon the spins-first approach by using the spin-1/2 example to introduce perturbation theory, the addition of angular momentum, and identical particles.

USAGE

At Oregon State University, the content of this text is taught in five courses as shown below.

<table>
<thead>
<tr>
<th>Junior-Year Paradigms Courses</th>
<th>Waves</th>
<th>Central Forces</th>
<th>Period Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spin and Quantum Measurement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Operators and Measurement</td>
<td>and EM waves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Quantum Spookiness</td>
<td>Particle in a Box</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Unbound States</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior-Year Quantum Mechanics Capstone Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13. Identical Particles and Time-Dependent Perturbation Theory</td>
</tr>
<tr>
<td></td>
<td>14. Modern Applications</td>
</tr>
</tbody>
</table>

For a traditional curriculum, the content of this text would cover a full-year course, either two semesters or three quarters. A proposed weekly outline for two 15-week semesters or three 10-week quarters is shown below.
<table>
<thead>
<tr>
<th>Week</th>
<th>Chapter</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Stern-Gerlach experiment, Quantum State Vectors, Bra-ket notation</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Matrix notation, General Quantum Systems</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Operators, Measurement, Commuting Observables</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Uncertainty Principle, S^2 Operator, Spin-1 System</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Schrödinger Equation, Time Evolution</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Spin Precession, Neutrino Oscillations, Magnetic Resonance</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>EPR Paradox, Bell’s Inequalities, Schrödinger’s Cat</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>Energy Eigenvalue Equation, Wave Function</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>One-Dimensional Potentials, Finite Well, Infinite Well</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>Free Particle, Wave Packets, Momentum Space</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>Uncertainty Principle, Barriers</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>Three-Dimensional Energy Eigenvalue Equation, Separation of Variables</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>Angular Momentum, Motion on a Ring and Sphere, Spherical Harmonics</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>Hydrogen Atom, Radial Equation, Energy Eigenvalues</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>Hydrogen Wave Functions, Spectroscopy</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>1-D Harmonic Oscillator, Operator Approach, Energy Spectrum</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>Harmonic Oscillator Wave Functions, Matrix Representation</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>Momentum Space Wave Functions, Time Dependence, Molecular Vibrations</td>
</tr>
<tr>
<td>19</td>
<td>10</td>
<td>Time-Independent Perturbation Theory: Nondegenerate, Degenerate</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>Perturbation Examples: Harmonic Oscillator, Stark Effect in Hydrogen</td>
</tr>
<tr>
<td>21</td>
<td>11</td>
<td>Hyperfine Structure, Coupled Basis</td>
</tr>
<tr>
<td>22</td>
<td>11</td>
<td>Addition of Angular Momenta, Clebsch-Gordan Coefficients</td>
</tr>
<tr>
<td>23</td>
<td>12</td>
<td>Hydrogen Atom: Fine Structure, Spin-Orbit, Zeeman Effect</td>
</tr>
<tr>
<td>24</td>
<td>13</td>
<td>Identical Particles, Symmetrization, Helium Atom</td>
</tr>
<tr>
<td>25</td>
<td>14</td>
<td>Time-Dependent Perturbation Theory, Harmonic Perturbation</td>
</tr>
<tr>
<td>26</td>
<td>14</td>
<td>Radiation, Selection Rules</td>
</tr>
<tr>
<td>27</td>
<td>15</td>
<td>Periodic Potentials, Bloch’s Theorem</td>
</tr>
<tr>
<td>28</td>
<td>15</td>
<td>Dispersion Relation, Density of States, Semiconductors</td>
</tr>
<tr>
<td>29</td>
<td>16</td>
<td>Modern Applications of Quantum Mechanics, Laser Cooling and Trapping</td>
</tr>
<tr>
<td>30</td>
<td>16</td>
<td>Quantum Information Processing</td>
</tr>
</tbody>
</table>
AUDIENCE AND EXPECTED BACKGROUND

The intended audience is junior and senior physics majors, who are expected to have taken intermediate-level courses in modern physics and linear algebra. No other upper-level physics or mathematics courses are required. For our own students, we review matrix algebra in a seven contact hour “preface” course that precedes the Paradigms courses that teach quantum mechanics. The material for that preface course is in Appendix C. The material in Appendix B summarizes an earlier Paradigms course on oscillations, and the material in Appendix D summarizes the classical wave part of the Paradigms course on waves.

STUDENT ACTIVITIES AND WEBSITE

Student engagement activities are an integral part of the Paradigms curriculum. All of the activities that we have developed are freely available on our wiki website:

http://physics.oregonstate.edu/portfolioswiki

The wiki contains a wealth of information about the Paradigms project, the courses we teach, and the materials we have developed. Details about individual activities include descriptions, student handouts, instructor’s guides, advice about how to use active engagement strategies, videos of classroom practice, narratives of classroom activities, and comments from users—both internal and external to Oregon State University. This is a dynamic website that is continually updated as we develop new activities and improve existing ones. We encourage you to visit the website and join the community. E-mail us with corrections, additions, and suggestions.

Each of the quantum mechanics activities that we use in our five courses is referenced in the resource section at the end of the appropriate chapter in the text. The quantum mechanics activities are collected within the wiki website with a direct link:

www.physics.oregonstate.edu/qmactivities

These activities include different types of activities such as computer-based activities, group activities, and class response activities. The most extensive activity is a computer simulation of Stern-Gerlach experiments. This SPINS software is a full-featured, menu-driven application that allows students to simulate successive Stern-Gerlach measurements and explore incompatible observables, eigenstate expansions, interference, and quantum dynamics. The use of the SPINS software facilitates our spins-first approach. The beauty of the simulation is that students steeped in classical physics perform a foundational quantum experiment and learn the most fascinating and counterintuitive aspects of quantum mechanics at an early stage.

ACKNOWLEDGMENTS

This work is the product of a broad and energetic community of educators and students within the Paradigms in Physics program. I thank all of our students for their hard work, insights, and innumerable suggestions. My colleagues Corinne Manogue and Janet Tate have developed some of the courses upon which this text is based. They have worked with me throughout the writing of this text and I am indebted to them for their valuable contributions. I gratefully acknowledge my fellow faculty who have developed and taught in the new curriculum: Dedra Demaree, Tevian Dray, Tomasz Giebultowicz, Elizabeth Gire, William Hetherington, Henri Jansen, Kenneth Krane, Yun-Shik Lee, Victor Madsen, Ethan Minot, Oksana Ostroverkhova, David Roundy, Philip Siemens, Albert Stetz, William...
Preface

Preface

Warren, and Allen Wasserman. I would also like to acknowledge the important contributions of early teaching assistants Kerry Browne, Jason Janesky, Cheryl Klipp, Katherine Meyer, Steve Sahyun, and Emily Townsend—their expertise, dedication, and enthusiasm were above and beyond the call of duty. The many subsequent teaching assistants have also been enthusiastic and valued contributors. I also thank those who have contributed in various ways to the development of activities: Mario Belloni, Tim Budd, Wolfgang Christian, Paco Esquembre, Lichun Jia, and Shannon Mayer. I particularly thank Daniel Schroeder for sharing his original SPINS software. I acknowledge useful and constructive feedback from Jeffrey Dunham, Joshua Folk, Rubin Landau, Edward (Joe) Redish, Joseph Rothberg, Homeyra Sadaghiani, Daniel Schroeder, Chandralekha Singh, and Daniel Styer. The Paradigms advisory committee has also provided valuable feedback and I acknowledge David Griffiths, Bruce Mason, William McCallum, Harriett Platsek, and Michael Wittmann for their help. I am grateful to the successive Physics Department chairs, Kenneth Krane and Henri Jansen, and Deans Fred Horne and Sherman Bloomer at Oregon State University for their endorsement of the Paradigms project.

This material is based on work supported by the National Science Foundation under Grant Nos. 9653250, 0231194, and 0618877. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. I thank Duncan McBride and Jack Hehn for their encouragement and support of our endeavor.

Jim Smith at Addison Wesley has been enthusiastic about this project from the early stages. Peter Alston has navigated me through the editorial process with skill and patience. I am grateful to them and also to Katie Conley, Steven Le, and the rest of the staff at Addison Wesley for their work to produce this text.

David H. McIntyre
Corvallis, Oregon
November 2011
Prologue

It was a dark and stormy night. Erwin huddled under his covers as he had done numerous times that summer. As the wind and rain lashed at the window, he feared having to retreat to the storm cellar once again. The residents of Erwin’s apartment building sought shelter whenever there were threats of tornadoes in the area. While it was safe down there, Erwin feared the ridicule he would face once again from the other school boys. In the rush to the cellar, Erwin seemed to always end up with a random pair of socks, and the other boys teased him about it mercilessly.

Not that Erwin hadn’t tried hard to solve this problem. He had a very simple collection of socks—black or white, for either school or play; short or long, for either trousers or lederhosen. After the first few teasing episodes from the other boys, Erwin had sorted his socks into two separate drawers. He placed all the black socks in one drawer and all the white socks in another drawer. Erwin figured he could determine an individual sock’s length in the dark of night simply by feeling it, but he had to have them presorted into white and black because the apartment generally lost power before the call to the shelter.

Unfortunately, Erwin found that this presorting of the socks by color was ineffective. Whenever he reached into the white sock drawer and chose two long socks, or two short socks, there was a 50% probability of any one sock being black or white. The results from the black sock drawer were the same. The socks seemed to have “forgotten” the color that Erwin had determined previously.

Erwin also tried sorting the socks into two drawers based upon their length, without regard to color. When he chose black or white socks from these long and short drawers, the socks had also “forgotten” whether they were long or short.

After these fruitless attempts to solve his problem through experiments, Erwin decided to save himself the fashion embarrassment, and he replaced his sock collection with a set of medium length brown socks. However, he continued to ponder the mysteries of the socks throughout his childhood.

After many years of daydreaming about the mystery socks, Erwin Schrödinger proposed his theory of “Quantum Socks” and became famous. And that is the beginning of the story of the quantum socks.

The End.

Farfetched?? You bet. But Erwin’s adventure with his socks is the way quantum mechanics works. Read on.