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C H A P T E R 

1 Stern-Gerlach Experiments

It was not a dark and stormy night when Otto Stern and Walther  Gerlach performed their now famous 

experiment in 1922. The Stern-Gerlach experiment demonstrated that measurements on microscopic 

or quantum particles are not always as certain as we might expect. Quantum particles behave as mys-

teriously as Erwin’s socks—sometimes forgetting what we have already measured. Erwin’s adven-

ture with the mystery socks is farfetched because you know that everyday objects do not behave like 

his socks. If you observe a sock to be black, it remains black no matter what other properties of the 

sock you observe. However, the Stern- Gerlach experiment goes against these ideas. Microscopic or 

quantum particles do not behave like the classical objects of your everyday experience. The act of 

observing a quantum particle affects its measurable properties in a way that is foreign to our classical 

experience.

In these first three chapters, we focus on the Stern-Gerlach experiment because it is a conceptu-

ally simple experiment that demonstrates many basic principles of quantum mechanics. We discuss 

a variety of experimental results and the quantum theory that has been developed to predict those 

results. The mathematical formalism of quantum mechanics is based upon six postulates that we will 

introduce as we develop the theoretical framework. (A complete list of these postulates is in Section 1.5.) 

We use the Stern-Gerlach experiment to learn about quantum mechanics theory for two primary reasons: 

(1) It demonstrates how quantum mechanics works in principle by illustrating the postulates of quan-

tum mechanics, and (2) it demonstrates how quantum mechanics works in practice through the use 

of Dirac notation and matrix mechanics to solve problems. By using a simple example, we can focus 

on the principles and the new mathematics, rather than having the complexity of the physics obscure 

these new aspects.

1.1 � STERN-GERLACH EXPERIMENT

In 1922 Otto Stern and Walther Gerlach performed a seminal experiment in the history of quantum 

mechanics. In its simplest form, the experiment consisted of an oven that produced a beam of neu-

tral atoms, a region of space with an inhomogeneous magnetic field, and a detector for the atoms, as 

depicted in Fig. 1.1. Stern and Gerlach used a beam of silver atoms and found that the beam was split 

into two in its passage through the magnetic field. One beam was deflected upwards and one down-

wards in relation to the direction of the magnetic field gradient.

To understand why this result is so at odds with our classical expectations, we must first analyze 

the experiment classically. The results of the experiment suggest an interaction between a neutral parti-

cle and a magnetic field. We expect such an interaction if the particle possesses a magnetic moment M.

The potential energy of this interaction is E = -M~B, which results in a force F = �1M~B2. In the 
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2 Stern-Gerlach Experiments

Stern-Gerlach experiment, the magnetic field gradient is primarily in the z-direction, and the resulting 

z-component of the force is

  Fz =
0

0z
 1M~B2 

(1.1)

  � mz 
0Bz

0z
 .  

This force is perpendicular to the direction of motion and deflects the beam in proportion to the com-

ponent of the magnetic moment in the direction of the magnetic field gradient.

Now consider how to understand the origin of the atom’s magnetic moment from a classical view-

point. The atom consists of charged particles, which, if in motion, can produce loops of current that give 

rise to magnetic moments. A loop of area A and current I produces a magnetic moment

 m = IA (1.2)

in MKS units. If this loop of current arises from a charge q traveling at speed v in a circle of radius r, 

then

  m =
q

2pr>v
 pr 2 

  =
qrv

2
 (1.3)

  =
q

2m
 L ,  

where L = mrv is the orbital angular momentum of the particle. In the same way that the earth 

revolves around the sun and rotates around its own axis, we can also imagine a charged particle in 

an atom having orbital angular momentum L and a new property, the intrinsic angular momen-

tum, which we label S and call spin. The intrinsic angular momentum also creates current loops, 

so we expect a similar relation between the magnetic moment M and S. The exact calculation 
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FIGURE 1.1 Stern-Gerlach experiment to measure the spin component of neutral 

particles along the z-axis. The magnet cross section at right shows the inhomogeneous 

field used in the experiment.
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1.1 Stern-Gerlach Experiment 3

involves an integral over the charge distribution, which we will not do. We simply assume that we 

can relate the magnetic moment to the intrinsic angular momentum in the same fashion as Eq. (1.3), 

giving

 M = g 
q

2m
 S , (1.4)

where the dimensionless gyromagnetic ratio g contains the details of that integral.

A silver atom has 47 electrons, 47 protons, and 60 or 62 neutrons (for the most common isotopes). 

The magnetic moments depend on the inverse of the particle mass, so we expect the heavy protons and 

neutrons (�2000 me) to have little effect on the magnetic moment of the atom and so we neglect them. 

From your study of the periodic table in chemistry, you recall that silver has an electronic configura-

tion 1s22s22p63s23p64s23d104p64d105s1, which means that there is only the lone 5s electron outside 

of the closed shells. The electrons in the closed shells can be represented by a spherically symmetric 

cloud with no orbital or intrinsic angular momentum (unfortunately we are injecting some quantum 

mechanical knowledge of atomic physics into this classical discussion). That leaves the lone 5s elec-

tron as a contributor to the magnetic moment of the atom as a whole. An electron in an s state has no 

orbital angular momentum, but it does have spin. Hence the magnetic moment of this electron, and 

therefore of the entire neutral silver atom, is

 M = -g 
e

2me

 S , (1.5)

where e is the magnitude of the electron charge. The classical force on the atom can now be written as

 Fz � -g 
e

2me

 Sz 
0Bz

0z
 . (1.6)

The deflection of the beam in the Stern-Gerlach experiment is thus a measure of the component (or pro-

jection) Sz of the spin along the z-axis, which is the orientation of the magnetic field gradient.

If we assume that the 5s electron of each atom has the same magnitude 0S 0  of the intrinsic angular 

momentum or spin, then classically we would write the z-component as Sz = 0S 0 cos u, where u is 

the angle between the z-axis and the direction of the spin S. In the thermal environment of the oven, 

we expect a random distribution of spin directions and hence all possible angles u. Thus we expect 

some continuous distribution (the details are not important) of spin components from Sz = - 0S 0  to  

Sz = + 0S 0 , which would yield a continuous spread in deflections of the silver atomic beam. Rather, 

the experimental result that Stern and Gerlach observed was that there are only two deflections, indi-

cating that there are only two possible values of the z-component of the electron spin. The magnitudes 

of these deflections are consistent with values of the spin component of

 Sz = {
U

2
 , (1.7)

where U is Planck’s constant h divided by 2p and has the numerical value

  U = 1.0546 * 10-34  J~s 

  = 6.5821 * 10-16  eV~s .  

(1.8)

This result of the Stern-Gerlach experiment is evidence of the quantization of the electron’s 

spin angular momentum component along an axis. This quantization is at odds with our classical 
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4 Stern-Gerlach Experiments

expectations for this measurement. The factor of 1/2 in Eq. (1.7) leads us to refer to this as a 

spin-1/2 system.

In this example, we have chosen the z-axis along which to measure the spin component, but there 

is nothing special about this direction in space. We could have chosen any other axis and we would 

have obtained the same results.

Now that we know the fine details of the Stern-Gerlach experiment, we simplify the experiment 

for the rest of our discussions by focusing on the essential features. A simplified schematic representa-

tion of the experiment is shown in Fig. 1.2, which depicts an oven that produces the beam of atoms, a 

Stern-Gerlach device with two output ports for the two possible values of the spin component, and two 

counters to detect the atoms leaving the output ports of the Stern-Gerlach device. The Stern-Gerlach 

device is labeled with the axis along which the magnetic field is oriented. The up and down arrows 

indicate the two possible measurement results for the device; they correspond respectively to the 

results Sz = {U>2 in the case where the field is oriented along the z-axis. There are only two possible 

results in this case, so they are generally referred to as spin up and spin down. The physical quantity 

that is measured, Sz in this case, is called an observable. In our detailed discussion of the experiment 

above, we chose the field gradient in such a manner that the spin up states were deflected upwards. 

In this new simplification, the deflection itself is not an important issue. We simply label the output 

port with the desired state and count the particles leaving that port. The Stern-Gerlach device sorts 

(or filters, selects or analyzes) the incoming particles into the two possible outputs Sz = {U>2 in the 

same way that Erwin sorted his socks according to color or length. We follow convention and refer to 

a Stern-Gerlach device as an analyzer.

In Fig. 1.2, the input and output beams are labeled with a new symbol called a ket. We use the 

ket 0  +9 as a mathematical representation of the quantum state of the atoms that exit the upper port 

corresponding to Sz = +U>2. The lower output beam is labeled with the ket 0  -9, which corresponds 

to Sz = -U>2, and the input beam is labeled with the more generic ket 0  c9. The kets are representa-

tions of the quantum states. They are used in mathematical expressions and they represent all the 

information that we can know about the state. This ket notation was developed by Paul A. M. Dirac 

and is central to the approach to quantum mechanics that we take in this text. We will discuss the 

mathematics of these kets in full detail later. With regard to notation, you will find many different 

ways of writing the same ket. The symbol within the ket brackets is any simple label to distinguish 

the ket from other different kets. For example, the kets 0  +9, 0  +U>29, 0 Sz = +U>29, 0  +zn9, and 0 c 9 
are all equivalent ways of writing the same thing, which in this case signifies that we have measured 

the z-component of the spin and found it to be +U>2 or spin up. Though we may label these kets in 

different ways, they all refer to the same physical state and so they all behave the same mathemati-

cally. The symbol 0 {9 refers to both the 0  +9 and 0  -9 kets. The first postulate of quantum mechanics 

tells us that kets in general describe the quantum state mathematically and that they contain all the 

information that we can know about the state. We denote a general ket as 0  c9.
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FIGURE 1.2 Simplified schematic of the Stern-Gerlach experiment, 

depicting a source of atoms, a Stern-Gerlach analyzer, and two counters.
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1.1 Stern-Gerlach Experiment 5

Postulate 1

The state of a quantum mechanical system, including all the information you 

can know about it, is represented mathematically by a normalized ket 0  c9.

We have chosen the particular simplified schematic representation of the Stern-Gerlach 

experiment shown in Fig. 1.2, because it is the same representation used in the SPINS software 

program that you may use to simulate these experiments. The SPINS program allows you to per-

form all the experiments described in this text. This software is freely available, as detailed in 

Resources at the end of the chapter. In the SPINS program, the components are connected with 

simple lines to represent the paths the atoms take. The directions and magnitudes of deflections 

of the beams in the program are not relevant. That is, whether the spin up output beam is drawn 

as deflected upwards, downwards, or not at all, is not relevant. The labeling on the output port is 

enough to tell us what that state is. Thus the extra ket label 0  +9 on the spin up output beam in Fig. 

1.2 is redundant and will be dropped soon.

The SPINS program permits alignment of Stern-Gerlach analyzing devices along all three axes 

and also at any angle f measured from the x-axis in the x-y plane. This would appear to be difficult, if 

not impossible, given that the atomic beam in Fig. 1.1 is directed along the y-axis, making it unclear 

how to align the magnet in the y-direction and measure a deflection. In our depiction and discussion of 

Stern-Gerlach experiments, we ignore this technical complication.

In the SPINS program, as in real Stern-Gerlach experiments, the numbers of atoms detected 

in particular states can be predicted by probability rules that we will discuss later. To simplify 

our schematic depictions of Stern-Gerlach experiments, the numbers shown for detected atoms 

are those obtained by using the calculated probabilities without any regard to possible statistical 

uncertainties. That is, if the theoretically predicted probabilities of two measurement possibilities 

are each 50%, then our schematics will display equal numbers for those two possibilities, whereas 

in a real experiment, statistical uncertainties might yield a 55%>45% split in one experiment and 

a 47%>53% split in another, etc. The SPINS program simulations are designed to give statistical 

uncertainties, so you will need to perform enough experiments to convince yourself that you have a 

sufficiently good estimate of the probability (see SPINS Lab 1 for more information on statistics).

Now let’s consider a series of simple Stern-Gerlach experiments with slight variations that help to 

illustrate the main features of quantum mechanics. We first describe the experiments and their results 

and draw some qualitative conclusions about the nature of quantum mechanics. Then we introduce the 

formal mathematics of the ket notation and show how it can be used to predict the results of each of 

the experiments.

1.1.1 � Experiment 1

The first experiment is shown in Fig. 1.3 and consists of a source of atoms, two Stern-Gerlach ana-

lyzers both aligned along the z-axis, and counters for the output ports of the analyzers. The atomic 

beam coming into the first Stern-Gerlach analyzer is split into two beams at the output, just like the 

original experiment. Now instead of counting the atoms in the upper output beam, the spin compo-

nent is measured again by directing those atoms into the second Stern-Gerlach analyzer. The result of 

this experiment is that no atoms are ever detected coming out of the lower output port of the second 

Stern-Gerlach analyzer. All atoms that are output from the upper port of the first analyzer also pass 
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6 Stern-Gerlach Experiments

through the upper port of the second analyzer. Thus we say that when the first Stern-Gerlach analyzer 

measures an atom to have a z-component of spin Sz = +U>2, then the second analyzer also measures 

Sz = +U>2 for that atom. This result is not surprising, but it sets the stage for results of experiments 

to follow.

Though both Stern-Gerlach analyzers in Experiment 1 are identical, they play different roles in 

this experiment. The first analyzer prepares the beam in a particular quantum state 1 0  +92 and the 

second analyzer measures the resultant beam, so we often refer to the first analyzer as a state prepa-

ration device. By preparing the state with the first analyzer, the details of the source of atoms can be 

ignored. Thus our main focus in Experiment 1 is what happens at the second analyzer because we 

know that any atom entering the second analyzer is represented by the 0  +9 ket prepared by the first 

analyzer. All the experiments we will describe employ a first analyzer as a state preparation device, 

though the SPINS program has a feature where the state of the atoms coming from the oven is deter-

mined but unknown, and the user can perform experiments to determine the unknown state using only 

one analyzer in the experiment.

1.1.2 � Experiment 2

The second experiment is shown in Fig. 1.4 and is identical to Experiment 1 except that the sec-

ond Stern-Gerlach analyzer has been rotated by 90° to be aligned with the x-axis. Now the second 

analyzer measures the spin component along the x-axis rather the z-axis. Atoms input to the second 

analyzer are still represented by the ket 0  +9 because the first analyzer is unchanged. The result of this 

experiment is that atoms appear at both possible output ports of the second analyzer. Atoms leaving 

the upper port of the second analyzer have been measured to have Sx = +U>2, and atoms leaving 
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FIGURE 1.3 Experiment 1 measures the spin component along the z-axis twice in succession.
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FIGURE 1.4 Experiment 2 measures the spin component along the z-axis and then along the x-axis.
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1.1 Stern-Gerlach Experiment 7

the lower port have Sx = -U>2. On average, each of these ports has 50% of the atoms that left the 

upper port of the first analyzer. As shown in Fig. 1.4, the output states of the second analyzer have 

new labels 0  +9x and 0  -9x, where the x subscript denotes that the spin component has been measured 

along the x-axis. We assume that if no subscript is present on the quantum ket 1e.g., 0  +92, then the 

spin component is along the z-axis. This use of the z-axis as the default is a common convention 

throughout our work and also in much of physics.

A few items are noteworthy about this experiment. First, we notice that there are still only two 

possible outputs of the second Stern-Gerlach analyzer. The fact that it is aligned along a different axis 

doesn’t affect the fact that we get only two possible results for the case of a spin-1/2 particle. Second, 

it turns out that the results of this experiment would be unchanged if we used the lower port of the first 

analyzer. That is, atoms entering the second analyzer in state 0  -9 would also result in half the atoms 

in each of the 0 {9x output ports. Finally, we cannot predict which of the second analyzer output ports 

any particular atom will come out. This can be demonstrated in actual experiments by recording the 

individual counts out of each port. The arrival sequences at any counter are completely random. We 

can say only that there is a 50% probability that an atom from the second analyzer will exit the upper 

analyzer port and a 50% probability that it will exit the lower port. The random arrival of atoms at the 

detectors can be seen clearly in the SPINS program simulations.

This probabilistic nature is at the heart of quantum mechanics. One might be tempted to say that 

we just don’t know enough about the system to predict which port the atom will exit. That is to say, 

there may be some other variables, of which we are ignorant, that would allow us to predict the results. 

Such a viewpoint is known as a local hidden variable theory. John Bell proved that such theories are 

not compatible with the experimental results of quantum mechanics. The conclusion to draw from this 

is that even though quantum mechanics is a probabilistic theory, it is a complete description of reality. 

We will have more to say about this in Chapter 4.

Note that the 50% probability referred to above is the probability that an atom input to the second 

analyzer exits one particular output port. It is not the probability for an atom to pass through the whole sys-

tem of Stern-Gerlach analyzers. It turns out that the results of this experiment (the 50>50 split at the sec-

ond analyzer) are the same for any combination of two orthogonal axes of the first and second analyzers.

1.1.3 � Experiment 3

Experiment 3, shown in Fig. 1.5, extends Experiment 2 by adding a third Stern-Gerlach analyzer aligned 

along the z-axis. Atoms entering the third analyzer have been measured by the first Stern-Gerlach 

analyzer to have spin component up along the z-axis, and by the second analyzer to have spin component 

up along the x-axis. The third analyzer then measures how many atoms have spin component up or down 
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FIGURE 1.5 Experiment 3 measures the spin component three times in succession.
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8 Stern-Gerlach Experiments

along the z-axis. Classically, one would expect that the final measurement would yield the result spin 

up along the z-axis, because that was measured at the first analyzer. That is to say: classically the first 

two analyzers tell us that the atoms have Sz = +U>2 and Sx = +U>2, so the third measurement must 

yield Sz = +U>2. But that doesn’t happen, as Erwin learned with his quantum socks in the Prologue. 

The quantum mechanical result is that the atoms are split with 50% probability into each output port at 

the third analyzer. Thus the last two analyzers behave like the two analyzers of Experiment 2 (except 

with the order reversed), and the fact that there was an initial measurement that yielded Sz = +U>2 is 

somehow forgotten or erased.

This result demonstrates another key feature of quantum mechanics: a measurement disturbs the 

system. The second analyzer has disturbed the system such that the spin component along the z-axis 

does not have a unique value, even though we measured it with the first analyzer. Erwin saw this 

when he sorted, or measured, his socks by color and then by length. When he looked, or measured, 

a third time, he found that the color he had measured originally was now random—the socks had 

forgotten about the first measurement. One might ask: Can I be more clever in designing the experi-

ment such that I don’t disturb the system? The short answer is no. There is a fundamental incompat-

ibility in trying to measure the spin component of the atom along two different directions. So we say 

that Sx and Sz are incompatible observables. We cannot know the measured values of both simul-

taneously. The state of the system can be represented by the ket 0  +9 = 0 Sz = +U>29 or by the ket 

0  +9x = 0 Sx = +U>29, but it cannot be represented by a ket 0 Sz = +U>2, Sx = +U>29 that specifies 

values of both components. Having said this, it should be said that not all pairs of quantum mechanical 

observables are incompatible. It is possible to do some experiments without disturbing some of the 

other aspects of the system. We will see in Section 2.4 that whether two observables are compatible or 

not is very important in how we analyze a quantum mechanical system.

Not being able to measure both the Sz and Sx spin components is clearly distinct from the classi-

cal case where we can measure all three components of the spin vector, which tells us which direction 

the spin is pointing. In quantum mechanics, the incompatibility of the spin components means that we 

cannot know which direction the spin is pointing. So when we say “the spin is up,” we really mean 

only that the spin component along that one axis is up (vs. down). The quantum mechanical spin vec-

tor cannot be said to be pointing in any given direction. As is often the case, we must check our classi-

cal intuition at the door of quantum mechanics.

1.1.4 � Experiment 4

Experiment 4 is depicted in Fig. 1.6 and is a slight variation on Experiment 3. Before we get into the 

details, note a few changes in the schematic drawings. As promised, we have dropped the ket labels on 

the beams because they are redundant. We have deleted the counters on all but the last analyzer and 

instead simply blocked the unwanted beams and given the average number of atoms passing from one 

analyzer to the next. The beam blocks are shown explicitly in Fig. 1.6 but will not be shown after this to 

be consistent with the SPINS program. Note also that in Experiment 4c two output beams are combined 

as input to the following analyzer. This is simple in principle and in the SPINS program but can be 

difficult in practice. The recombination of the beams must be done properly so as to avoid “disturbing” 

the beams. If you care to read more about this problem, see Feynman’s Lectures on Physics, volume 3. 

We will have more to say about the “disturbance” later in Section 2.2. For now we simply assume that 

the beams can be recombined in the proper manner.

Experiment 4a is identical to Experiment 3. In Experiment 4b, the upper beam of the second ana-

lyzer is blocked and the lower beam is sent to the third analyzer. In Experiment 4c, both beams are 

combined with our new method and sent to the third analyzer. It should be clear from our previous 

experiments that Experiment 4b has the same results as Experiment 4a. We now ask about the results of 
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1.1 Stern-Gerlach Experiment 9

Experiment 4c. If we were to use classical probability analysis, then Experiment 4a would indicate that 

the probability for an atom leaving the first analyzer to take the upper path through the second analyzer 

and then exit through the upper port of the third analyzer is 25%, where we are now referring to the total 

probability for those two steps. Likewise, Experiment 4b would indicate that the total probability to 

take the lower path through the second  analyzer and exit through the upper port of the third analyzer is 

also 25%. Hence the total probability to exit from the upper port of the third analyzer when both paths 

are available, which is Experiment 4c, would be 50%, and likewise for the exit from the lower port.

However, the quantum mechanical result in Experiment 4c is that all the atoms exit the upper 

port of the third analyzer and none exits the lower port. The atoms now appear to “remember” that 

they were initially measured to have spin up along the z-axis. By combining the two beams from 

the second analyzer, we have avoided the quantum mechanical disturbance that was evident in 

Experiments 3, 4a, and 4b. The result is now the same as Experiment 1, which means it is as if the 

second analyzer is not there.

To see how odd this is, look carefully at what happens at the lower port of the third analyzer. In 

this discussion, we refer to percentages of atoms leaving the first analyzer, because that analyzer is 

the same in all three experiments. In Experiments 4a and 4b, 50% of the atoms are blocked after the 

middle analyzer and 25% of the atoms exit the lower port of the third analyzer. In Experiment 4c, 

100% of the atoms pass from the second analyzer to the third analyzer, yet fewer atoms come out 

of the lower port. In fact, no atoms make it through the lower port! So we have a situation where 
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FIGURE 1.6 Experiment 4 measures the spin component three times in succession 

and uses (a and b) one or (c) two beams from the second analyzer.
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10 Stern-Gerlach Experiments

allowing more ways or paths to reach a counter results in fewer counts. Classical probability theory 

cannot explain this aspect of quantum mechanics. It is as if you opened a second window in a room to 

get more sunlight and the room went dark!

However, you may already know of a way to explain this effect. Imagine a procedure whereby 

combining two effects leads to cancellation rather than enhancement. The concept of wave interfer-

ence, especially in optics, comes to mind. In the Young’s double-slit experiment, light waves pass 

through two narrow slits and create an interference pattern on a distant screen, as shown in Fig. 1.7. 

Either slit by itself produces a nearly uniform illumination of the screen, but the two slits combined 

produce bright and dark interference fringes, as shown in Fig. 1.7(b). We explain this by adding 

together the electric field vectors of the light from the two slits, then squaring the resultant vector to 

find the light intensity. We say that we add the amplitudes and then square the total amplitude to find 

the resultant intensity. See Section 6.6 or an optics textbook for more details about this experiment.

We follow a similar prescription in quantum mechanics. We add together amplitudes and then 

take the square to find the resultant probability, which opens the door to interference effects. Before 

we discuss quantum mechanical interference, we must explain what we mean by an amplitude in 

quantum mechanics and how we calculate it.

1.2 � QUANTUM STATE VECTORS

Postulate 1 of quantum mechanics stipulates that kets are to be used for a mathematical description of a 

quantum mechanical system. These kets are abstract entities that obey many of the rules you know about 

ordinary spatial vectors. Hence they are called quantum state vectors. As we will show in Example 1.3, 

these vectors must employ complex numbers in order to properly describe quantum mechanical systems. 

Quantum state vectors are part of a vector space that we call a Hilbert space. The dimensionality of 

the Hilbert space is determined by the physics of the system at hand. In the Stern-Gerlach example, 

the two possible results for a spin  component measurement dictate that the vector space has only two 
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FIGURE 1.7 (a) Young’s double-slit interference experiment and (b) resultant intensity patterns 

observed on the screen, demonstrating single-slit diffraction and double-slit interference.
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