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Introduction to Probability for Computing

Computer science students can find probability challenging and remote from their com-

puting interests. Maximize student engagement and understanding with this uniquely

rigorous yet accessible undergraduate text, which is written specifically for comput-

ing students. It combines probability basics with a wide range of computing-relevant

topics, including statistical inference, computer system simulation, randomized algo-

rithms, and Markov modeling of queueing systems. The book has been class-tested,

and will be an invaluable learning tool whether your course covers probability with

statistics, with simulation, with randomized algorithms, or with stochastic processes.

• Motivates students with numerous real-world computer science applications, such

as hash table design, capacity provisioning in data centers, web page ranking, disk

modeling, virus propagation, deducing signals in noisy environments,

error-correcting codes, caching, and primality testing.

• Written as a sequence of questions and answers to engage students and encourage

them actively to think about and better understand definitions, equations, and

fundamental concepts.

• Includes full-color illustrations and almost 400 exercises.

Mor Harchol-Balter is the Bruce J. Nelson Professor of Computer Science at Carnegie

Mellon University. She is a Fellow of both ACM and IEEE. She has received numerous

teaching awards, including the Herbert A. Simon Award for teaching excellence at

CMU. She is also the author of the popular textbook Performance Analysis and Design

of Computer Systems (Cambridge, 2013).
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“Based on 20 years of teaching Computer Science and Operations Research at Carnegie

Mellon University, Professor Harchol-Balter provides a unique presentation of prob-

ability and statistics that is both highly engaging and also strongly motivated by real-

world computing applications that students will encounter in industry. This book is

approachable and fun for undergraduate students, while also covering advanced con-

cepts relevant to graduate students.”

Eytan Modiano, Massachusetts Institute of Technology

“This book provides a fantastic introduction to probability for computer scientists and

computing professionals, addressing concepts and techniques crucial to the design and

analysis of randomized algorithms, to performing well-designed simulations, to sta-

tistical inference and machine learning, and more. Also contains many great exercises

and examples. Highly recommend!”

Avrim Blum, Toyota Technological Institute at Chicago

“Mor Harchol-Balter’s new book does a beautiful job of introducing students to prob-

ability! The book is full of great computer science-relevant examples, wonderful intu-

ition, simple and clear explanations, and mathematical rigor. I love the question-answer

style she uses, and could see using this book for students ranging from undergradu-

ate students with zero prior exposure to probability all the way to graduate students

(or researchers of any kind) who need to brush up and significantly deepen (and/or

broaden) their knowledge of probability.”

Anna Karlin, University of Washington

“Probability is at the heart of modeling, design, and analysis of computer systems

and networks. This book by a pioneer in the area is a beautiful introduction to the

topic for undergraduate students. The material in the book introduces theoretical topics

rigorously, but also motivates each topic with practical applications. This textbook is an

excellent resource for budding computer scientists who are interested in probability.”

R. Srikant, University of Illinois at Urbana-Champaign

“I know probability theory, and have taught it to undergrads and grads at MIT, UC

Berkeley, and Carnegie Mellon University. Yet this book has taught me some wonder-

fully interesting important material that I did not know. Mor is a great thinker, lecturer,

and writer. I would love to have learned from this book as a student — and to have

taught from it as an instructor!”

Manuel Blum, University of California, Berkeley, and Carnegie Mellon University
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Preface

Probability theory has become indispensable in computer science. It is at the

core of machine learning and statistics, where one often needs to make decisions

under stochastic uncertainty. It is also integral to computer science theory, where

most algorithms today are randomized algorithms, involve random coin flips. It

is a central part of performance modeling in computer networks and systems,

where probability is used to predict delays, schedule jobs and resources, and

provision capacity.

Why This Book?

This book gives an introduction to probability as it is used in computer science

theory and practice, drawing on applications and current research developments

as motivation and context. This is not a typical counting and combinatorics book,

but rather it is a book centered on distributions and how to work with them.

Every topic is driven by what computer science students need to know. For ex-

ample, the book covers distributions that come up in computer science, such as

heavy-tailed distributions. There is a large emphasis on variability and higher

moments, which are very important in empirical computing distributions. Com-

puter systems modeling and simulation are also discussed, as well as statistical

inference for estimating parameters of distributions. Much attention is devoted to

tail bounds, such as Chernoff bounds. Chernoff bounds are used for confidence

intervals and also play a big role in the analysis of randomized algorithms, which

themselves comprise a large part of the book. Finally, the book covers Markov

chains, as well as a bit of queueing theory, both with an emphasis on their use in

computer systems analysis.

Intended Audience

The material is presented at the advanced undergraduate level. The book is based

on an undergraduate class, Probability and Computing (PnC), which I have been

teaching at Carnegie Mellon University (CMU) for almost 20 years. While PnC

is primarily taken by undergraduates, several Masters and PhD students choose

to take the class. Thus we imagine that instructors can use the book for different

levels of classes, perhaps spanning multiple semesters.
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xvi Preface

Question/Answer Writing Style

The book uses a style of writing aimed at engaging the reader to be active, rather

than passive. Instead of large blocks of text, we have short “Questions” and

“Answers.” In working through the book, you should cover up the answers, and

write down your own answer to each question, before looking at the given answer.

The goal is “thinking” rather than “reading,” where each chapter is intended to

feel like a conversation.

Exercises

The exercises in this book are an integral part of learning the material. They also

introduce many of the computer science and statistics applications. Very few of

the exercises are rote. Every problem has important insights, and the insights

often build on each other. Exercises are (very roughly) organized from easier to

harder. Several of the exercises in the book were contributed by students in the

class!

To aid in teaching, solutions to a large subset of the exercises are available

for instructors only at www.cambridge.org/harchol-balter. Instructors who need

solutions to the remaining exercises can request these from the author. The

solutions are for the personal use of the instructor only. They should not be

distributed or posted online, so that future generations can continue to enjoy the

exercises.

Organization of the Material

The book consists of eight parts. Parts I, II, and III provide an introduction to

basic probability. Part IV provides an introduction to computer systems mod-

eling and simulation. Part V provides an introduction to statistical inference.

Parts VI and VII comprise a course in randomized algorithms, starting with tail

bound inequalities and then applying these to analyze a long list of randomized

algorithms. Part VIII provides an introduction to stochastic processes as they’re

used in computing.

Before we describe the parts in more detail, it is worth looking at the dependency

structure for the book, given in Figure P1. Aside from Parts I, II, and III, most

of the parts can be taught in any order.

In particular, it is possible to imagine at least four different courses being taught

from this book, depending on the parts that an instructor might choose to teach.

Figure P2 depicts different courses that one might teach. All the courses start

with Parts I, II, and III, but then continue with Simulation, or Statistics, or

Randomized Algorithms, or Stochastic Processes, depending on the particular

course.
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Preface xvii

Part IV
Systems

Modeling and
Simulation

Part VI
Tail

Bounds

Part VIII
Discrete-Time
Markov Chains

and Queues

Part VII
Randomized
Algorithms

Part III
Continuous

Random
Variables

Part II
Discrete
Random
Variables

Part I
Probability 
on Events

Part V
Statistical
Inference

Figure P1 The dependency structure between the parts of this book. Most parts are

independent of other parts and can be taught in any order.

Description of Each Part

Part I: Foundations and Probability on Events: Part I starts by reviewing the

prerequisites for the book. These include series, calculus, elementary combina-

torics, and asymptotic notation. Exercises and examples are provided to help in

reviewing the prerequisites. The main focus of Part I is on defining probability

on events, including conditioning on events, independence of events, the Law

of Total Probability, and Bayes’ Law. Some examples of applications covered

in Part I are: faulty computer networks, Bayesian reasoning for healthcare test-

ing, modeling vaccine efficacy, the birthday paradox, Monty Hall problems, and

modeling packet corruption in the Internet.

Part II: Discrete Random Variables: Part II introduces the most common dis-

crete random variables (Bernoulli, Binomial, Geometric, and Poisson), and then
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xviii Preface

Course 1 Course 2 Course 3 Course 4
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Random
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Part II
Discrete
Random
Variables

Part I
Probability 
on Events

Part III
Continuous

Random
Variables

Part II
Discrete
Random
Variables

Part I
Probability 
on Events

Part III
Continuous

Random
Variables

Part II
Discrete
Random
Variables

Part I
Probability 
on Events

Part III
Continuous

Random
Variables

Part II
Discrete
Random
Variables

Part I
Probability 
on Events

Part IV
Systems

Modeling and
Simulation

Part V
Statistical
Inference

Part V
Statistical
Inference

Part VI
Tail

Bounds

Part VII
Randomized
Algorithms

Part IV
Systems

Modeling and
Simulation

Part VIII
Discrete-Time
Markov Chains

and Queues

Probability
and 

Simulation

Probability
and 

Statistics

Probability and 
Randomized
Algorithms

Probability and 
Stochastic
Processes

Figure P2 Four different courses that one can teach out of this book.

continues with the standard material on random variables, such as linearity of

expectation, conditioning, conditional probability mass functions, joint distribu-

tions, and marginal distributions. Some more advanced material is also included,

such as: variance and higher moments of random variables; moment-generating

functions (specifically z-transforms) and their use in solving recurrence rela-

tions; Jensen’s inequality; sums of a random number of random variables; tail

orderings, and simple tail inequalities. Both Simpson’s paradox and the inspec-

tion paradox are covered. Some examples of applications covered in Part II are:

noisy reading from a flash storage, the binary symmetric channel, approximating

a Binomial distribution by a Poisson, the classical marriage algorithm, mod-

eling the time until a disk fails, the coupon collector problem, properties of
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random graphs, time until � consecutive failures, computer virus propagation,

epidemic growth modeling, hypothesis testing in data analysis, stopping times,

total variation distance, and polygon triangulation.

Part III: Continuous Random Variables: Part III repeats the material in Part II,

but this time with continuous random variables. We introduce the Uniform,

Exponential, and Normal distributions, as well as the Central Limit Theorem.

In addition, we introduce the Pareto heavy-tailed distribution, which is most

relevant for empirical computing workloads, and discuss its relevance to today’s

data center workloads. We cover failure rate functions and the heavy-tail property

and their relevance to computing workloads. We again cover moment-generating

functions, but this time via Laplace transforms, which are more commonly used

with continuous random variables. Some applications covered in Part II are:

classifying jobs in a supercomputing center, learning the bias of a coin, dart

throwing, distributions whose parameters are random variables, relating laptop

quality to lifetime, modeling disk delays, modeling web file sizes, modeling

compute usage, modeling IP flow durations, and Internet node degrees.

Part IV: Computer Systems Modeling and Simulation: Part IV covers the

basics of what is needed to run simulations of computer systems. We start by

defining and analyzing the Poisson process, which is the most commonly used

model for the arrival process of jobs into computer systems. We then study how

to generate random variables for simulation, using the inverse transform method

and the accept–reject method. Finally, we discuss how one would program a

simple event-driven or trace-driven simulator. Some applications that we cover

include: Malware detection of infected hosts, population modeling, reliability

theory, generating a Normal random variable, generating Pareto and Bounded

Pareto random variables, generating a Poisson random variable, simulation of

heavy-tailed distributions, simulation of high-variance distributions, simulation

of jointly distributed random variables, simulation of queues, and simulation of

networks of queues.

Part V: Statistical Inference: Part V switches gears to statistics, particularly

statistical inference, where one is trying to estimate some parameters of an ex-

periment. We start with the most traditional estimators, the sample mean and

sample variance. We also cover desirable properties of estimators, including zero

bias, low mean squared error, and consistency. We next cover maximum likeli-

hood estimation and linear regression. We complete this part with a discussion

of maximum a posterior (MAP) estimators and minimum mean square error

(MMSE) estimators. Some applications that we cover include: estimating voting

probabilities, deducing the original signal in a noisy environment, estimating true

job sizes from user estimates, estimation in interaction graphs, and estimation in

networks with error correcting codes.
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Part VI: Tail Bounds and Applications: Part VI starts with a discussion of tail

bounds and concentration inequalities (Markov, Chebyshev,Chernoff), for which

we provide full derivations. We provide several immediate applications for these

tail bounds, including a variety of classic balls-and-bins applications. The balls

and bins framework has immediate application to dispatching tasks to servers in

a server farm, as well as immediate application to hashing algorithms, which we

also study extensively. We cover applications of tail bounds to defining confidence

intervals in statistical estimation, and well as bias estimation, polling schemes,

crowd sourcing, and other common settings from computing and statistics.

Part VII: Randomized Algorithms: Part VII introduces a wide range of ran-

domized algorithms. The randomized algorithms include Las Vegas algorithms,

such as randomized algorithms for sorting and median finding, as well as Monte

Carlo randomized algorithms such as MinCut, MaxCut, matrix multiplication

checking, polynomial multiplication, and primality testing. The exercises in this

part are particularly relevant because they introduce many additional randomized

algorithms such as randomized dominating set, approximate median finding, in-

dependent set, AND/OR tree evaluation, knockout tournaments, addition of �-bit

numbers, randomized string exchange, path-finding in graphs, and more. We use

the tail bounds that we derived earlier in Part VI to analyze the runtimes and

accuracy of our randomized algorithms.

Part VIII: Markov Chains with a Side of Queueing Theory: Part VIII provides

an introduction to stochastic processes as they come up in computer science.

Here we delve deeply into discrete-time Markov chains (both finite and infinite).

We discuss not only how to solve for limiting distributions, but also when

they exist and why. Ergodicity, positive-recurrence and null-recurrence, passage

times, and renewal theory are all covered. We also cover time averages versus

ensemble averages and the impact of these different types of averages on running

simulations. Queueing theory is integral to Part VIII. We define the performance

metrics that computer scientists care about: throughput, response time, and load.

We cover Little’s Law, stability, busy periods, and capacity provisioning. A

huge number of applications are covered in Part VIII, including, for example,

the classic PageRank algorithm for ranking web pages, modeling of epidemic

spread, modeling of caches, modeling processors with failures, Brownian motion,

estimating the spread of malware, reliability theory applications, population

modeling, server farm and data center modeling, admission control, and capacity

provisioning.
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