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Part I

Fundamentals and
Probability on Events

In this first part of the book we focus on some basic tools that we will need

throughout the book.

We start, in Chapter 1, with a review of some mathematical basics: series,

limits, integrals, counting, and asymptotic notation. Rather than attempting an

exhaustive coverage, we instead focus on a select “toolbox” of techniques and

tricks that will come up over and over again in the exercises throughout the book.

Thus, while none of this chapter deals with probability, it is worth taking the

time to master its contents.

In Chapter 2, we cover the fundamentals of probability. Here we define proba-

bility based on an experiment and events. We discuss the axioms of probability,

conditioning, independence, the Law of Total Probability, and Bayes’ Law.
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1 Before We Start ... Some

Mathematical Basics

This book assumes some mathematical skills. The reader should be comfortable

with high school algebra, including logarithms. Basic calculus (integration, dif-

ferentiation, limits, and series evaluation) is also assumed, including nested (3D)

integrals and sums. We also assume that the reader is comfortable with sets and

with simple combinatorics and counting (as covered in a discrete math class).

Finally, we assume versatility with “big-O” and “little-o” notation. To help the

reader, in this chapter we review a few basic concepts that come up repeatedly

throughout the book. Taking the time to understand these now will make it much

easier to work through the book.

1.1 Review of Simple Series

There are several series that come up repeatedly in the book, starting in Chapter 3.

Question: Try evaluating the following in closed form. (Don’t peek at the answers

until you’ve tried these yourself.) We provide the full derivations below.

(a) � = 1 + � + �2 + �3 + · · · + ��.

(b) � = 1 + � + �2 + �3 + · · · , where |� | < 1.

(c) � = 1 + 2� + 3�2 + 4�3 + · · · + ���21.

(d) � = 1 + 2� + 3�2 + 4�3 + · · · , where |� | < 1.

Example 1.1 Evaluate: � = 1 + � + �2 + �3 + · · · + ��.

Solution: The trick here is to multiply both sides by the quantity (1 2 �):

(1 2 �)� = � 2 ��

= 1 + � + �2 + �3 + · · · + ��

2� 2 �2 2 �3 2 · · · 2 ��+1

= 1 2 ��+1.
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1.1 Review of Simple Series 3

Hence,

� =
1 2 ��+1

1 2 �
. (1.1)

Note that (1.1) assumes that � b 1. If � = 1, then the answer is clearly � = � + 1.

Example 1.2 Evaluate: � = 1 + � + �2 + �3 + · · · where |� | < 1.

Solution: This is the same as series (a) except that we need to take the limit as

� ³ >:

� = lim
�³>

1 + � + �2 + · · · + �� = lim
�³>

1 2 ��+1

1 2 �
=

1

1 2 �
. (1.2)

Question: Why did we need |� | < 1? What would happen if |� | g 1?

Answer: If |� | g 1, then the infinite sum diverges.

Example 1.3 Evaluate: � = 1 + 2� + 3�2 + 4�3 + · · · + ���21.

Approach 1: One approach is to again use the (1 2 �) trick:

(1 2 �)� = 1 + 2� + 3�2 + 4�3 + · · · + ���21

2� 2 2�2 2 3�3 2 4�4 2 · · · 2 ���

= 1 + � + �2 + �3 + · · · + ��21 2 ���

=
1 2 ��

1 2 �
2 ���

=
1 2 (� + 1)�� + ���+1

1 2 �
.

Hence,

� =
1 2 (� + 1)�� + ���+1

(1 2 �)2
. (1.3)

Approach 2: An easier approach is to view the sum as the derivative of a known

sum:

� =
�

��

�

1 + � + �2 + �3 + · · · + ��
�

=
�

��

�

1 2 ��+1

1 2 �

�

=
(1 2 �) · (2(� + 1)��) + (1 2 ��+1)

(1 2 �)2

=
1 2 (� + 1)�� + ���+1

(1 2 �)2
.
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4 1 Before We Start ... Some Mathematical Basics

The above assumes that � b 1. If � = 1, then the answer is � = 1 + 2 + · · · + � =
�(�+1)

2
.

Example 1.4 Evaluate: � = 1 + 2� + 3�2 + 4�3 + · · · where |� | < 1.

Solution: We again view � as a derivative of a sum:

� =
�

��

�

1 + � + �2 + �3 + · · ·
�

=
�

��

�

1

1 2 �

�

=
1

(1 2 �)2
. (1.4)

1.2 Review of Double Integrals and Sums

Integrals, nested integrals, and nested sums come up throughout the book, starting

in Chapter 7. When evaluating these, it is important to pay attention to the area

over which you’re integrating and also to remember tricks like integration by

parts.

Question: Try deriving the following three expressions (again, no peeking at the

answers).

(a)
+ >

0
��2���.

(b)
+ >

0

+ �

0
�2�����. Do this both with and without changing the order of inte-

gration.

(c)
+ �

1

+ ln �

0
1����. Do this both with and without changing the order of inte-

gration.

Below we provide the derivations.

Example 1.5 Derive:
+ >

0
��2���.

Solution: We start by reviewing integration by parts:
� �

�

��� = (��)

�

�

�

�

�
2

� �

�

���. (1.5)
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1.2 Review of Double Integrals and Sums 5

Applying (1.5), let � = �, and �� = ��. Let �� = �2���, and � = 2�2�. Then,
� >

0

��2� = 2��2�
�

�

�

�=>

�=0
2

� >

�=0

(2�2�)��

= 0 2 (20) 2 �2�
�

�

�

>

�=0

= 0 + 0 2 (0 2 1)

= 1.

Example 1.6 Derive:
+ >

0

+ �

0
�2�����.

Solution: Without changing the order of integration, we have:
� �=>

�=0

� �=�

�=0

�2����� =

� �=>

�=0

��2�
�

�

�

�=�

�=0
��

=

� �=>

�=0

��2���

= 1.

To change the order of integration, we first need to understand the space over

which we’re integrating. The original region of integration is drawn in Fig-

ure 1.1(a), where � ranges from 0 to >, and, for each particular value of �, we

let � range from 0 to �.

x

y

(a) Original integration space

x

y

(b) Equivalent integration space

Figure 1.1 Region of integration drawn two ways.

We can visualize this instead as shown in Figure 1.1(b), where � now ranges

from 0 to >, and, for each particular value of �, we let � range from � to >:
� �=>

�=0

� �=>

�=�

�2����� =

� �=>

�=0

2�2�
�

�

�

�=>

�=�
��

=

� �=>

�=0

(0 + �2�)��

= 2�2�
�

�

�

�=>

�=0

= 1.
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6 1 Before We Start ... Some Mathematical Basics

Example 1.7 Derive:
+ �

1

+ ln �

0
1����.

Solution: Without changing the order of integration, we have:
� �=�

�=1

� �=ln �

�=0

1���� =

� �=�

�=1

ln ���

(applying integration by parts)

= (ln � · �)

�

�

�

�=�

�=1
2

� �=�

�=1

� ·
1

�
��

= � 2 0 2 (� 2 1)

= 1.

To change the order of integration, we first need to understand the space over

which we’re integrating. This is drawn in Figure 1.2(a).

(a) Original integration space

1

e1
x

y

(b) Equivalent integration space

1

e1
x

y

Figure 1.2 Region of integration drawn two ways.

We can visualize this instead as shown in Figure 1.2(b), which leads to the nested

integrals:
� �=1

�=0

� �=�

�=��
1���� =

� �=1

�=0

�

�

�

�

�=�

�=��
��

=

� �=1

�=0

(� 2 ��)��

= (�� 2 ��)

�

�

�

�=1

�=0

= (� 2 �) 2 (0 2 �0)

= 1.
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1.3 Fundamental Theorem of Calculus 7

1.3 Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus (FTC) will come up in the book starting

in Chapter 7. We state it here and provide some intuition for why it holds.

Theorem 1.8 (FTC and extension) Let � (�) be a continuous function defined

on the interval [�, �]. Then, for any �, where � < � < �,

�

��

� �

�

� (�)�� = � (�). (1.6)

Furthermore, for any differentiable function �(�),

�

��

� �(�)

�

� (�)�� = � (�(�)) · �2(�). (1.7)

We start with intuition for (1.6):

The integral
+ �

�
� (�)�� represents the area under the curve � (�) between � = �

and � = �. We are interested in the rate at which this area changes for a small

change in �.

It helps to think of the integral as a “box” parameterized by �.

Box(�) =

� �

�

� (�)�� .

�

��

� �

�

� (�)�� =
�

��
Box(�) = lim

�³0

Box(� + �) 2 Box(�)

�

= lim
�³0

+ �+�

�
� (�)�� 2

+ �

�
� (�)��

�

= lim
�³0

+ �+�

�
� (�)��

�

j lim
�³0

� (�) ·7�

7�
� (�) j � (� + �) for tiny �

= � (�).

The same argument applies to (1.7):

Box(�) =

� �(�)

�

� (�)�� .
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8 1 Before We Start ... Some Mathematical Basics

�

��

� �(�)

�

� (�)�� =
�

��
Box(�) = lim

�³0

Box(� + �) 2 Box(�)

�

= lim
�³0

+ �(�+�)

�
� (�)�� 2

+ �(�)

�
� (�)��

�

= lim
�³0

+ �(�+�)

�(�)
� (�)��

�

j lim
�³0

� (�(�)) · (�(� + �) 2 �(�))

�

= � (�(�)) · lim
�³0

�(� + �) 2 �(�)

�

= � (�(�)) · �2(�).

1.4 Review of Taylor Series and Other Limits

There are certain limits and limiting series which come up repeatedly in this

book, so we discuss these here.

Question: What is the famous limit in (1.8) called, and how should we interpret

it?

lim
�³>

�

1 +
1

�

��

. (1.8)

Answer: Expression (1.8) is the definition of Euler’s number, �, which is an

irrational, transcendental number having value approximately 2.7183.

It helps to think about (1.8) in terms of money. Suppose you have � dollars. You

are promised a 100% interest rate yearly. If the interest is compounded annually,

you will have 2� dollars after one year. If the interest is compounded every 6

months, you will have
�

1 + 1
2

�2

� =
9
4
� dollars after one year. If the interest is

compounded every 4 months, you will have
�

1 + 1
3

�3

� =
64
27
� dollars after one

year. Notice how this keeps going up. If the interest is compounded continuously,

you will have

lim
�³>

�

1 +
1

�

��

· � = � · �

dollars after one year. Big difference!
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1.4 Review of Taylor Series and Other Limits 9

Question: What, then, is this limit (assume � is a constant):

lim
�³>

�

1 +
�

�

��

?

Answer:

lim
�³>

�

1 +
�

�

��

= �� . (1.9)

To see this, let � =
�
�
. As � ³ >, we also have � ³ >:

lim
�³>

�

1 +
�

�

��

= lim
�³>

�

1 +
1

�

���

= lim
�³>

��

1 +
1

�

��� �

= �� . (1.10)

Question: Let 0 < � < 1. Let’s do some comparisons:

(a) What is bigger, 1 + � or ��?

(b) What is bigger, 1 2 � or �2�?

Hint: It helps to think about the Taylor series expansion of �� around � = 0.

Answer: For 0 < � < 1, it turns out that �� > 1 + � and �2� > 1 2 �. To

see this, we start with a brief reminder of the Taylor series expansion around 0,

also known as a Maclaurin series. Consider any function � (�) which is infinitely

differentiable at � = 0. Let us define

�(�) = � (0) +
� 2(0)

1!
� +

� 22(0)

2!
�2 +

� 222(0)

3!
�3 + · · · .

Observe that the multiplier ��

�!
gets very small for large �. It is easy to see

that �(�) is a polynomial that approximates � (�) very well around � = 0. In

particular, you can see via differentiation that the following are true:

�(0) = � (0)

� 2(0) = � 2(0)

� 22(0) = � 22(0)

� 222(0) = � 222(0)

etc.

In fact, Taylor’s theorem [71, p.678] says roughly that if � is within the radius of

convergence of �(·), then �(�) approaches � (�) as we write out more and more

terms of �(�). Expressing �(�) with an infinite number of terms allows us to say

that � (�) = �(�).
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10 1 Before We Start ... Some Mathematical Basics

Returning to our question, we can see that the function � (�) = �� is infinitely

differentiable around 0, and thus, for any �, we can express:

�� = � (�) = 1 +
�

1!
+
�2

2!
+
�3

3!
+ · · · . (1.11)

Thus clearly for any � > 0, we have that

�� > 1 + �, (1.12)

where 1 + � is a very good approximation for �� when � is very small.

Likewise, we can express � (�) = �2� as

�2� = 1 2
�

1!
+
�2

2!
2
�3

3!
+
�4

4!
2 · · · . (1.13)

Now, when 0 < � < 1, we see that

�2� > 1 2 �, (1.14)

because �2

2!
> �3

3!
> �4

4!
> · · · . Again, 1 2 � is a very good approximation for �2�

when � is very small.

We end with a discussion of the harmonic series.

Definition 1.9 The nth harmonic number is denoted by ��, where

�� = 1 +
1

2
+

1

3
+

1

4
+ · · · +

1

�
. (1.15)

Example 1.10 (Approximating ��)

Question: How can we find upper and lower bounds on ��?

Answer: Figure 1.3 shows the function � (�) = 1
�

in red. We know how to exactly

compute the area under the red curve. Now observe that the area under the red

curve is upper-bounded by the sum of the areas in the blue rectangles, which

form a harmonic sum. Likewise, the area under the red curve is lower-bounded by

the sum of the rectangles with the yellow border, which form a related harmonic

sum. Specifically, summing the area in the blue rectangles, we have that:

�� = 1 +
1

2
+

1

3
+ · · · +

1

�
>

� �+1

1

1

�
�� = ln(� + 1).

Likewise, summing the area in the yellow rectangles, we have that:

ln � =

� �

1

1

�
�� >

1

2
+

1

3
+ · · · +

1

�
.
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