Applied Quantum Mechanics

Featuring new coverage of quantum engineering and quantum information processing, the third edition of this bestselling textbook continues to provide a uniquely practical introduction to the fundamentals of quantum mechanics.

Key features:

- Straightforward explanations of quantum effects, suitable for readers from all backgrounds, equipping students with a robust understanding of underlying theoretical principles.
- Real-world engineering problems showcasing the application of theory to practice, providing a relevant and accessible introduction to cutting-edge quantum applications.
- Over 60 worked examples using MATLAB[®], enabling deeper understanding through computational exploration and visualization.
- A new chapter on quantum engineering, introducing state-of-the-art concepts in quantum information processing and quantum device design.

Revised and updated throughout, and supported online by downloadable MATLAB code, exam questions, and solutions to over 150 homework problems for instructors, this is the ideal textbook for engineers and scientists studying a first course in quantum mechanics.

A. F. J. Levi is Professor of Electrical and Computer Engineering and Physics and Astronomy, and Chair of the Ming Hsieh Department of Electrical and Computer Engineering – Electrophysics, at the University of Southern California (USC). He joined USC after a decade at AT&T Bell Laboratories, Murray Hill, New Jersey, and has over 25 years' experience in teaching applied quantum mechanics to engineers and scientists. He is the inventor of hot electron spectroscopy, discovered ballistic electron transport in transistors, created the first microdisk laser, and carried out groundbreaking work in optimal design of small electronic and photonic systems.

> "Applied Quantum Mechanics, third edition, by A. F. J. Levi, is an essential update in the rapidly evolving field of quantum mechanics. With a clear and concentrated focus on practical equation manipulation, using computational tools, and an intuitive understanding of applications, this edition skillfully integrates the latest advancements in electronics and quantum engineering. An indispensable resource for students and researchers, it strikes the perfect balance between conciseness and comprehensiveness."

Daryoosh Vashaee, North Carolina State University

"The new third edition of this textbook provides an essential introduction to quantum mechanics and its many technological and scientific applications that I would recommend to all undergraduate students. In particular, the focus on technological applications and devices and the many worked example problems make the material more concrete and illustrate the power of quantum mechanics."

Aaron M. Lindenberg, Stanford University

"Applied Quantum Mechanics by Levi stands out because of its unique blend of subjects, encompassing both fundamental and applied aspects of quantum mechanics. The new edition incorporates the subject of quantum circuits and information, which is absolutely timely and highly needed. I have used the previous editions over the years and I look forward to using the new edition. The textbook is especially well suited for upper-class undergraduates and/or first-year graduate students pursuing degrees in engineering or natural sciences."

Ridwan Sakidja, Missouri State University

"This third edition of *Applied Quantum Mechanics* by A. F. J. Levi will be a great asset for students in physics, engineering, and materials science who seek a solid introduction to the practical aspect of quantum mechanics that will allow them to investigate the electrical and optical properties of nanoscale devices. The addition of the section on quantum information processing will also give the students a birds-eye view of the rapidly growing field of quantum computing. Quantum engineering is an important breadth of knowledge that any engineer and scientist interested in the working of devices at the nanoscale must acquire, and this book offers a solid introduction to it."

Marc Cahay, University of Cincinnati

Applied Quantum Mechanics

Third Edition

A. F. J. Levi University of Southern California

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/highereducation/isbn/9781009308076

DOI: 10.1017/9781009308083

First edition © A. F. J. Levi 2003 Second edition © Cambridge University Press 2006 Third edition © Cambridge University Press & Assessment 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2003 Second edition published 2006 Third edition published 2024

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data Names: Levi, A. F. J. (Anthony Frederic John), 1959- author. Title: Applied quantum mechanics / A.F.J. Levi. Description: Third edition. | Cambridge ; New York : Cambridge University Press, 2022. | Includes index.

Identifiers: LCCN 2023008118 (print) | LCCN 2023008119 (ebook) | ISBN 9781009308076 (hardback) | ISBN 9781009308083 (epub)

Subjects: LCSH: Quantum theory. | Quantum theory-Industrial applications.

Classification: LCC QC174.12 .L44 2022 (print) | LCC QC174.12 (ebook) |

DDC 530.12-dc23/eng20230711

LC record available at https://lccn.loc.gov/2023008118 $\,$

LC ebook record available at https://lccn.loc.gov/2023008119 $\,$

ISBN 978-1-009-30807-6 Hardback

Additional resources for this publication at www.cambridge.org/Levi3e

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> Dass ich erkenne, was die Welt Im Innersten zusammenhält

> > Goethe (Faust, I.382–3)

Contents

			$page~{\rm xv}$		
	Preface to the Second Edition				
	Preface to the First Edition				
Note on MATLAB Programs				xix	
1	1 Toward Quantum Mechanics				
	1.1	Introdu		1	
		1.1.1	Diffraction and Interference of Light	2	
		1.1.2	Black-Body Radiation and Evidence for Quantization of Light	4	
		1.1.3	Photoelectric Effect and the Photon Particle	5	
		1.1.4	An Experiment to Prove the Photon Exists	6	
		1.1.5	Random Number Generation and Stochastic Computing	7	
		1.1.6	Photons in Classical RF Wireless Communication	8	
		1.1.7	Secure Quantum Communication	9	
		1.1.8	A Connection between Quantization of Photons and		
			Other Particles	12	
		1.1.9	Diffraction and Interference of Electrons	13	
		1.1.10	When Is a Particle a Wave?	14	
		1.1.11	Feynman Paths	15	
	1.2	The Sc	hrödinger Wave Equation	17	
		1.2.1	The Gaussian Electron Wave Packet and Dispersion	22	
		1.2.2	Measure of Wave Packet Dispersion	26	
		1.2.3	The Hydrogen Atom	27	
		1.2.4	Periodic Table of Elements	32	
		1.2.5	Electronic Properties of Bulk Semiconductors and		
			Heterostructures	34	
	1.3	Examp	le Exercises	41	
	1.4	Proble	ms	49	
2	Usi	ng the	Schrödinger Wave Equation	55	
	2.1	Introdu	action	55	

vii

Contents

	2.1.1	The Effect of Discontinuity in the Wave Function and its Slope	56
2.2	Bound	-State Wave Function Normalization and Completeness	58
2.3	Inversi	on Symmetry in the Potential	59
	2.3.1	One-Dimensional Rectangular Potential Well with Infinite	
		Barrier Energy	59
2.4	Numer	ical Solution of the Schrödinger Equation	62
2.5	Curren	t Flow	64
	2.5.1	Current in a Rectangular Potential Well with Infinite	
		Barrier Energy	65
	2.5.2	Current Flow due to a Traveling Wave	66
2.6	Degene	eracy as a Consequence of Symmetry	66
	2.6.1	Bound States in Three Dimensions and Degeneracy of Eigenvalues	66
2.7	Symme	etric Finite-Barrier Potential	67
	2.7.1	Calculation of Bound States in a Symmetric Finite-Barrier	
		Potential	69
2.8	Transn	nission and Reflection of Unbound States	71
	2.8.1	Scattering from a Potential Step when $m_1 = m_2$	73
	2.8.2	Scattering from a Potential Step when $m_1 \neq m_2$	74
	2.8.3	Probability Current Density for Scattering at a Potential Step	75
	2.8.4	Impedance Matching Unbound States for Unity Transmission	
		across a Potential Step	76
	2.8.5	The Reflectionless sech ² Potential	77
2.9	Impeda	ance Matching Bound States across a Potential Step	78
2.10	Particl	e Tunneling	78
	2.10.1	Electron Tunneling Limit to Reduction in Size of CMOS	
		Transistors	83
2.11	Examp	ble Exercises	84
2.12	Proble	ms	95
Elec	tron F	Propagation	105
3.1	Introd	uction	105
3.2	The P	ropagation Matrix Method	105
3.3	Curren	t Conservation and the Propagation Matrix	109
3.4	The Rectangular Potential Barrier		
	3.4.1	Transmission Probability for a Rectangular Potential Barrier	110
	3.4.2	Transmission as a Function of Energy	113
	3.4.3	Transmission Resonances	113
	3.4.4	Electron Wave Packet Tunneling	115
3.5	Resona	ant Tunneling	118
	3.5.1	Heterostructure Bipolar Transistor with Resonant Tunnel Barrier	120
	3.5.2	Resonant Tunneling between Two Quantum Wells	121

viii

3

Contents	;
----------	---

	3.6	Energy	y Bands in a Periodic Potential	126
		3.6.1	Bloch's Theorem	126
		3.6.2	Periodic Array of Rectangular Potential Energy Barriers	128
		3.6.3	Real Band Structure	129
		3.6.4	Imaginary Band Structure	130
		3.6.5	Complex Band Structure	130
		3.6.6	The Tight Binding Approximation	131
		3.6.7	Crystal Momentum and Effective Electron Mass	133
	3.7	The N	onequilibrium Electron Transistor	136
	3.8	Other	Engineering Applications	141
	3.9	The W	KB Approximation	142
		3.9.1	Tunneling through a High-Energy Barrier of Finite Thickness	143
	3.10	Exam	ple Exercises	145
	3.11	Proble	ems	161
4	Eige	enstate	es and Operators	170
	4.1	Introd	uction	170
		4.1.1	The Postulates of Quantum Mechanics	170
	4.2	One-P	article Wave Function Space	171
	4.3	Proper	rties of Linear Operators	172
		4.3.1	Product of Operators	173
		4.3.2	Properties of Hermitian Operators	173
		4.3.3	Normalization of Eigenfunctions	175
		4.3.4	Completeness of Eigenfunctions	175
		4.3.5	Commutator Algebra	175
	4.4	Dirac	Notation	177
		4.4.1	Linear Algebra	178
	4.5	Measu	rement of Real Numbers	182
		4.5.1	Time Dependence of Expectation Value	183
		4.5.2	Uncertainty of Expectation Value	184
		4.5.3	The Generalized Uncertainty Relation	185
	4.6	The N	o Cloning Theorem	187
	4.7	Densit	y of States	188
		4.7.1	Density of Electron States	188
		4.7.2	Quantum Conductance	192
		4.7.3	Calculating Density of States from a Dispersion Relation	195
		4.7.4	Density of Tight-Binding States	195
		4.7.5	Density of Photon States	199
	4.8		ble Exercises	200
	4.9	Proble		214
	-			

 $\mathbf{i}\mathbf{x}$

Contents

5	The	Harm	onic Oscillator	225
	5.1	The H	armonic Oscillator Potential	225
	5.2	Creati	on and Annihilation Operators	227
		5.2.1	The Ground State of the Harmonic Oscillator	228
		5.2.2	Excited States of the Harmonic Oscillator and Eigenstate	
			Normalization	231
	5.3	The H	armonic Oscillator Wave Functions	236
	5.4	Time l	Dependence	239
		5.4.1	The Superposition Operator	241
		5.4.2	Superposition State, Measurement, and Correlations	241
	5.5	Time 1	Dependence of Creation and Annihilation Operators	243
		5.5.1	Charged Particle in Harmonic Oscillator Potential Subject to	
			Constant Electric Field \mathbf{E}	245
	5.6	Cohere	ent States of the Harmonic Oscillator	246
	5.7	Quant	ization of Electromagnetic Fields	249
		5.7.1	Laser Light	250
		5.7.2	Quantization of an Electrical Resonator	250
	5.8	Quant	ization of Lattice Vibrations	251
	5.9	Quant	ization of Mechanical Vibrations	252
	5.10	Examp	ble Exercises	253
	5.11	Proble	ms	265
6	Ferr	nions a	and Bosons	275
	6.1	Introd	uction	275
		6.1.1	The Symmetry of Indistinguishable Particles	276
	6.2	Fermi-	-Dirac Distribution and Chemical Potential	283
		6.2.1	Writing a Computer Program to Calculate the Chemical Potential	286
		6.2.2	Plotting the Fermi–Dirac Distribution	288
		6.2.3	Fermi–Dirac Distribution Function and Thermal Equilibrium	
			Statistics	289
	6.3	The B	ose–Einstein Distribution Function	291
	6.4		ble Exercises	293
	6.5	Proble		297
7	Tim	e-Dep	endent Perturbation	302
	7.1	Introd		302
		7.1.1	An Abrupt Change in Potential	303
		7.1.2	Time-Dependent Change in Potential	304
	7.2	First-C	Order Time-Dependent Perturbation	307
		7.2.1	Higher-Order Terms in Time-Dependent Perturbation	308
		7.2.2	Charged Particle in a Harmonic Oscillator Potential	309

х

CAMBRIDGE

Cambridge University Press & Assessment 978-1-009-30807-6 — Applied Quantum Mechanics A. F. J. Levi Frontmatter <u>More Information</u>

Contents	5
----------	---

	7.3	The Golden Rule			
	7.3.1 The Golden Rule for Unbound States				
	7.4	Elastic Scattering from Ionized Impurities	316		
		7.4.1 The Coulomb Potential	318		
		7.4.2 Linear Screening of the Coulomb Potential	324		
	7.5	Photon Emission due to Electronic Transitions	332		
		7.5.1 Density of Optical Modes in Three Dimensions	332		
		7.5.2 Energy Density of Light	333		
		7.5.3 Background Photon Energy Density at Thermal Equilibrium	333		
		7.5.4 The Golden Rule for Stimulated Optical Transitions	334		
		7.5.5 The Einstein \mathcal{A} and \mathcal{B} Coefficients	335		
	7.6	Example Exercises	338		
	7.7	Problems	352		
8	The	Semiconductor Laser	359		
	8.1	Introduction	359		
	8.2	Spontaneous and Stimulated Emission	360		
		8.2.1 Absorption and Its Relation to Spontaneous Emission	363		
	8.3	Optical Transitions Using the Golden Rule	366		
		8.3.1 Optical Gain in the Presence of Electron Scattering	368		
	8.4	Designing a Laser Diode	369		
		8.4.1 The Optical Cavity	369		
		8.4.2 Mirror Loss and Photon Lifetime	375		
		8.4.3 The Fabry–Perot Laser Diode	376		
		8.4.4 Semiconductor Laser Diode Rate Equations	377		
	8.5	Large-Signal Transient Response	381		
		8.5.1 Scaling with Spontaneous Emission Factor β	383		
		8.5.2 Critical Slowing	384		
		8.5.3 Cavity Formation	385		
	8.6	Noise in Laser Diode Light Emission	387		
		8.6.1 Relative Intensity Noise (RIN)	388		
		8.6.2 Shot-Noise Limit to RIN	389		
		8.6.3 Langevin Intensity Rate Equations	390		
	8.7	Why the Model Works	390		
	8.8	Example Exercises	391		
	8.9	Problems	395		
9		e-Independent Perturbation	399		
	9.1	Introduction	399		
	9.2	Time-Independent Nondegenerate Perturbation	399		
		9.2.1 The First-Order Correction	400		

xi

CAMBRIDGE

Cambridge University Press & Assessment 978-1-009-30807-6 — Applied Quantum Mechanics A. F. J. Levi Frontmatter <u>More Information</u>

Contents

		9.2.2	The Second-Order Correction	402
		9.2.3	Harmonic Oscillator Subject to Perturbing Potential in x	404
		9.2.4	Harmonic Oscillator Subject to Perturbing Potential in x^2	405
		9.2.5	Harmonic Oscillator Subject to Perturbing Potential in x^3	407
	9.3	Time-In	ndependent Degenerate Perturbation	409
		9.3.1	A Two-Fold Degeneracy Split by Time-Independent Perturbation	409
		9.3.2	Matrix Method	410
		9.3.3	The Two-Dimensional Harmonic Oscillator Perturbed in xy	412
		9.3.4	Perturbation of Two-Dimensional Potential with Infinite	
			Barrier Energy	415
	9.4	Examp	le Exercises	418
	9.5	Probler	ns	428
10	Ang	ular M	lomentum and the Hydrogenic Atom	432
	10.1	Angula	r Momentum	432
		10.1.1	Classical Angular Momentum	432
	10.2	The Ar	ngular Momentum Operator	434
		10.2.1	Eigenvalues of Angular Momentum Operators \hat{L}_z and \hat{L}^2	436
		10.2.2	Geometrical Representation	438
		10.2.3	Spherical Coordinates and Spherical Harmonics	439
		10.2.4	The Rigid Rotator	445
	10.3	The Hy	zdrogen Atom	446
		10.3.1	Eigenstates and Eigenvalues of the Hydrogen Atom	447
		10.3.2	Hydrogenic Atom Wave Functions	454
		10.3.3	Electromagnetic Radiation	457
		10.3.4	Fine Structure of the Hydrogen Atom and Electron Spin	461
	10.4	Hybrid	ization	462
		10.4.1	sp ³ Hybridization to Enhance Electron Density Directivity	463
	10.5	Examp	le Exercises	465
	10.6	Probler	ns	477
11	Tow	ard Qu	antum Engineering	481
	11.1	Introdu	action	481
	11.2	Optima	al Design of a Heterostructure Tunnel Diode	481
		11.2.1	Tunnel Diode Model	481
		11.2.2	Optimal Design of a Linear Current–Voltage Characteristic	483
		11.2.3	The Non-convex Cost Function Landscape	485
	11.3	Optima	al Design of Density of States	487
		11.3.1	Tight-Binding Model	487
		11.3.2	Guided Random Walk	487
	11.4	Photon	Detection after a Beam Splitter	489

xii

CAMBRIDGE

Cambridge University Press & Assessment 978-1-009-30807-6 — Applied Quantum Mechanics A. F. J. Levi Frontmatter <u>More Information</u>

Contents

	11.4.1	Detection of Two Indistinguishable Photons after a Beam Splitter	491
	11.4.2	Detection of Multiple Indistinguishable Photons after a Beam	
		Splitter	493
11.5	Cohere	ent Quantum Control	495
	11.5.1	Control Field	495
	11.5.2	Control of Single-Photon Dynamics in a Fabry–Perot Resonator	495
	11.5.3	Transient Response	497
	11.5.4	Coherent Control of Transient Response	499
	11.5.5	Boolean Logic	502
11.6	Quant	um Information Processing	502
	11.6.1	The Single-Qubit State	503
	11.6.2	Representation of a Single Qubit on the Bloch Sphere and	
		Unitary Operations	503
	11.6.3	Multi-Qubit States	506
	11.6.4	Two-Qubit States	506
	11.6.5	Two-Qubit Superposition States	506
	11.6.6	Two-Qubit Entangled Bell States	507
	11.6.7	Two-Qubit Controlled Gates	508
	11.6.8	Bell-State Generation	509
	11.6.9	Bell's Inequality	510
	11.6.10	Teleportation	513
11.7	Examp	le Exercises	515
11.8	Proble	ms	520
Appendix	A Pi	hysical Values	522
Appendia	B = G	eometry	527
Appendix	$C = U_{i}$	seful Mathematical Relations	530
Appendia	D M	<i>iatrices</i>	536
Appendia	$E = V \epsilon$	ector Calculus and Maxwell's Equations	538
Appendix	F T	he Greek Alphabet	541
Appendia	G = C	rystal Structure	542
Appendix	H C	lassical Mechanics and Classical Electromagnetism	546
Index			596

xiii

Preface to the Third Edition

A great deal of progress has been made in applied quantum mechanics since the first and second editions of this book were published. While there is a continued focus on three main themes – practicing manipulation of equations and analytic problem solving in quantum mechanics, utilizing the availability of modern computer power to numerically solve problems, and developing an intuition for applications of quantum mechanics – the need for an accessible introductory book about applied quantum mechanics is even greater now than it was in 2003. In the US there is renewed emphasis on research in electronics, particularly transistors and photonics, quantum information processing, and quantum engineering. The third edition of *Applied Quantum Mechanics* sets out to address these interests. To accommodate a new chapter called "Toward Quantum Engineering," the previous first chapter – introducing background material on classical mechanics and electromagnetism – has been moved to an appendix. In addition, the text in the book has been made more concise. This has created room for some additional material whose aim is to maintain reader interest by broadening the range of applications and concepts.

The book content remains designed for a one-semester course. For those on a quarter system or those wishing to focus on core elements of the book, Chapter 9 on time-independent perturbation theory and Chapter 10 on the hydrogen atom can be skipped.

Changes in the third edition include the addition of problems to each chapter. Chapter 11 is new and addresses device optimization, control, and provides an introduction to quantum information processing.

Cambridge University Press has a website with supporting material for both students and instructors who use the book. This includes MATLAB code used to create figures and solutions to exercises. The website is: www.cambridge.org/Levi3e.

Preface to the Second Edition

Following the remarkable success of the first edition and not wanting to give up on a good thing, the second edition of this book continues to focus on three main themes: practicing manipulation of equations and analytic problem solving in quantum mechanics, utilizing the availability of modern compute power to numerically solve problems, and developing an intuition for applications of quantum mechanics. Of course there are many books which address the first of the three themes. However, the aim here is to go beyond that which is readily available and provide the reader with a richer experience of the possibilities of the Schrödinger equation and quantum phenomena.

Changes in the second edition include the addition of problems to each chapter. These also appear on the Cambridge University Press website. To make space for these problems and other additions, previously printed listing of MATLAB code has been removed from the text. Chapter 1 now has a section on harmonic oscillation of a diatomic molecule. Chapter 2 has a new section on quantum communication. In Chapter 3 the discussion of numerical solutions to the Schrödinger now includes periodic boundary conditions. The tight binding model of band structure has been added to Chapter 4 and the numerical evaluation of density of states from dispersion relation has been added to Chapter 5. The discussion of occupation number representation for electrons has been extended in Chapter 7. Chapter 11 is a new chapter in which quantization of angular momentum and the hydrogenic atom are introduced.

Cambridge University Press has a website with supporting material for both students and teachers who use the book. This includes MATLAB code used to create figures and solutions to exercises. The website is: www.cambridge.org/9780521860963

Many thanks to Omid Nohadani for help with formatting the current version of the book.

 $\mathbf{x}\mathbf{v}\mathbf{i}$

Preface to the First Edition

The theory of quantum mechanics forms the basis for our present understanding of physical phenomena on an atomic and sometimes macroscopic scale. Today, quantum mechanics can be applied to most fields of science. Within engineering, important subjects of practical significance include semiconductor transistors, lasers, quantum optics, and molecular devices. As technology advances, an increasing number of new electronic and opto-electronic devices will operate in ways which can only be understood using quantum mechanics. Over the next thirty years, fundamentally quantum devices such as single-electron memory cells and photonic signal processing systems may well become commonplace. Applications will emerge in any discipline that has a need to understand, control, and modify entities on an atomic scale. As nano- and atomic-scale structures become easier to manufacture, increasing numbers of individuals will need to understand quantum mechanics in order to be able to exploit these new fabrication capabilities. Hence, one intent of this book is to provide the reader with a level of understanding and insight that will enable him or her to make contributions to such future applications, whatever they may be.

The book is intended for use in a one-semester introductory course in applied quantum mechanics for engineers, material scientists, and others interested in understanding the critical role of quantum mechanics in determining the behavior of practical devices. To help maintain interest in this subject, I felt it was important to encourage the reader to solve problems and to explore the possibilities of the Schrödinger equation. To ease the way, solutions to example exercises are provided in the text, and the enclosed CD-ROM contains computer programs written in the MATLAB language that illustrate these solutions. The computer programs may be usefully exploited to explore the effects of changing parameters such as temperature, particle mass, and potential within a given problem. In addition, they may be used as a starting point in the development of designs for quantum mechanical devices.

The structure and content of this book are influenced by experience teaching the subject. Surprisingly, existing texts do not seem to address the interests or build on the computing skills of today's students. This book is designed to better match such student needs.

Some material in the book is of a review nature, and some material is merely an introduction to subjects that will undoubtedly be explored in depth by those interested in pursuing more advanced topics. The majority of the text, however, is an essentially self-contained study of quantum mechanics for electronic and opto-electronic applications.

There are many important connections between quantum mechanics and classical mechanics and electromagnetism. For this and other reasons, Chapter 1 is devoted to a review of classical concepts. This establishes a point of view with which the predictions of

xvii

Preface to the First Edition

quantum mechanics can be compared. In a classroom situation it is also a convenient way in which to establish a uniform minimum knowledge base. In Chapter 2 the Schrödinger wave equation is introduced and used to motivate qualitative descriptions of atoms, semiconductor crystals, and a heterostructure diode. Chapter 3 develops the more systematic use of the one-dimensional Schrödinger equation to describe a particle in simple potentials. It is in this chapter that the quantum mechanical phenomenon of tunneling is introduced. Chapter 4 is devoted to developing and using the propagation matrix method to calculate electron scattering from a one-dimensional potential of arbitrary shape. Applications include resonant electron tunneling and the Kronig-Penney model of a periodic crystal potential. The generality of the method is emphasized by applying it to light scattering from a dielectric discontinuity. Chapter 5 introduces some related mathematics, the generalized uncertainty relation, and the concept of density of states. Following this, the quantization of conductance is introduced. The harmonic oscillator is discussed in Chapter 6 using the creation and annihilation operators. Chapter 7 deals with fermion and boson distribution functions. This chapter shows how to numerically calculate the chemical potential for a multi-electron system. Chapter 8 introduces and then applies time-dependent perturbation theory to ionized impurity scattering in a semiconductor and spontaneous light-emission from an atom. The semiconductor laser diode is described in Chapter 9. Finally, Chapter 10 discusses the (still useful) time-independent perturbation theory.

Throughout this book, I have tried to make applications to systems of practical importance the main focus and motivation for the reader. Applications have been chosen because of their dominant roles in today's technologies. Understanding is, after all, only useful if it can be applied

xviii

Note on MATLAB Programs

If you have not already installed the MATLAB^{(B)1} language on your computer, you will need to purchase a copy and do so. MATLAB is available from MathWorks (www.mathworks.com/).

After verifying that MATLAB has been correctly installed, download the directory AppliedQMmatlab from www.cambridge.org/Levi3e and copy to a convenient location in your computer user directory.

Launch MATLAB using the icon on the desktop or from the start menu. The MATLAB command window will appear on your computer screen. From the MATLAB command window, use the path browser to set the path to the location of the AppliedQMmatlab directory. Type the name of the file you wish to execute in the MATLAB command window (do not include the ".m" extension). Press the enter key on the keyboard to run the program.

You will find that some programs prompt for input from the keyboard. Most programs display results graphically with intermediate results displayed in the MATLAB command window.

To edit values in a program, or to edit the program itself, double-click on the file name to open the file editor.

You should note that the computer programs in the AppliedQMmatlab directory are not optimized. They are written in a very simple way to minimize any possible confusion or sources of error. The intent is that these programs be used as an aid to the study of applied quantum mechanics. When required, integration is performed explicitly, and in the simplest way possible. However, for exercises involving matrix diagonalization, use is made of special MATLAB functions.

Some programs make use of the functions chempot.m, fermi.m, mu.m, runge4.m, and solve_schM.m.

¹ MATLAB is a registered trademark of MathWorks, Inc.

xix