Set-Theoretic Multi-Method Research

A state-of-the-art comprehensive exposition of combining qualitative comparative analysis (QCA) and case studies, this book facilitates the efficient use and independent learning of this form of set-theoretic multi-method research (SMMR) with the best available software. It will reduce the time and effort required when performing both QCA and case studies within the same research project. This is achieved by spelling out the conceptual principles and practices in SMMR, and by introducing a tailor-made R software package. With an applied and practical focus, this is an intuitive resource for implementing the most complete protocol of SMMR. Features include Learning Goals, Core Points, and Empirical Examples, as well as boxed examples of R codes and the R output it produces. There is also a glossary for key SMMR terms. Additional online material is available, comprising machine-readable datasets and R scripts for replication and independent learning.

Carsten Q. Schneider is Pro-Rector for External Relations and Professor of Political Science at Central European University (CEU), Vienna. He teaches set-theoretic methods worldwide and his research in comparative politics and social science methodology has appeared in leading international journals and publishing houses.

Methods for Social Inquiry

Editors

Colin Elman, Syracuse University Diana Kapiszewski, Georgetown University James Mahoney, Northwestern University

The *Methods for Social Inquiry* series comprises compact texts offering practical instructions for qualitative and multi-method research. Each book is accompanied by pedagogical data and exercises.

The books in the series offer clear, straightforward, and concrete guidance for teaching and using methods. While grounded in their relevant prescriptive logics, the books focus on the "how-to" of the methods they discuss – the practical tasks that must be undertaken to effectively employ them. The books should be useful for instruction at both the advanced undergraduate and graduate levels.

The books are tightly integrated with digital content and online enhancements through the Qualitative Data Repository (QDR). QDR is a new NSF-funded repository housing digital data used in qualitative and multi-method social inquiry. The pedagogical data (and related documentation) that accompany the books in the series will be housed in QDR.

Books in the series

- 1. Schneider, Carsten Q., Set-Theoretic Multi-Method Research: A Guide to Combining QCA and Case Studies
- 2. Kreuzer, Markus, The Grammar of Time: A Toolbox for Comparative Historical Analysis
- 3. Oana, Ioana-Elena, Schneider, Carsten Q. and Thomann, Eva, *Qualitative Comparative Analysis Using R: A Beginner's Guide*
- 4. Cyr, Jennifer, Focus Groups for the Social Science Researcher

Set-Theoretic Multi-Method Research

A Guide to Combining QCA and Case Studies

Carsten Q. Schneider

Central European University

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781009307147

DOI: 10.1017/9781009307154

© Carsten Q. Schneider 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2024

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data Names: Schneider, Carsten Q., 1972- author. Title: Set-theoretic multi-method research : a guide to combining QCA and case studies / Carsten Q. Schneider. Description: First edition. | Cambridge ; New York, NY : Cambridge University Press, [2023] Series: Methods for social inquiry 1 | Includes bibliographical references and index. Identifiers: LCCN 2023024831 (print) | LCCN 2023024832 (ebook) | ISBN 9781009307147 (hardback) | ISBN 9781009307192 (paperback) | ISBN 9781009307154 (epub) Subjects: LCSH: Social sciences-Comparative method. | Social sciences-Mathematical models. | Qualitative research-Methodology. | Mixed methods research. | Set theory. Classification: LCC H61 .S377 2023 (print) | LCC H61 (ebook) | DDC 300.72-dc23/eng/20230801 LC record available at https://lccn.loc.gov/2023024831 LC ebook record available at https://lccn.loc.gov/2023024832 ISBN 978-1-009-30714-7 Hardback

ISBN 978-1-009-30719-2 Paperback

Additional resources for this publication at https://doi.org/10.7910/DVN/URMOVC

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List c	List of Figures		<i>page</i> ix
	List c	f Tables		xi
	Prefa	Preface		
1	Intro	duction: S	SMMR in a Nutshell	1
	1.1	Multi-M	ethod Research	1
	1.2	Set-Theoretic Multi-Method Research		3
	1.3	Empirical Example		5
	1.4	The Elements of SMMR		
		1.4.1	Cross-Case and Within-Case Levels	8
		1.4.2	Analytic Goals	11
		1.4.3	Types of Cases	11
		1.4.4	Single and Comparative Within-Case Designs	12
		1.4.5	Types of Sets	12
		1.4.6	Types of QCA Solution Formulas and	
			Regularity Theory of Causation	13
		1.4.7	SMMR in a Nutshell	14
	1.5	Structure	e of the Book	15
	1.6	SMMR a	and Related Case-Oriented Approaches	17
	1.7	How to U	Use This Book	25
		1.7.1	Prerequisites	25
		1.7.2	Data and Resources	27
		1.7.3	Some Terminology	28
2	Basics of SMMR			
	$A \Rightarrow$	Y		30
	2.1	Empirica	al Example	30
	2.2	2.2 Types of Cases in SMMR		33
		2.2.1	Crisp Sets	33

vi		Contents	
		2.2.2 Fuzzy Sets	35
	2.3	Single-Case SMMR	39
		2.3.1 Descriptive Inference SMMR	39
		2.3.2 Causal Inference SMMR	41
	2.4	Excursus: Forms of Broken Sufficiency Corridors	46
	2.5	Comparative SMMR	48
		2.5.1 Descriptive Inference SMMR	49
		2.5.2 Causal Inference SMMR	54
	2.6	Applying SMMR	58
		2.6.1 The smmr() Function	58
		2.6.2 Single-Case SMMR	60
		2.6.3 Comparative SMMR	62
	2.7	Conclusion	66
3	Disju	inctions	
	A + B	$B \Rightarrow Y$	68
	3.1	Empirical Example	69
	3.2	The Challenge	72
	3.3	The Solutions	73
		3.3.1 Climbing the Ladder of Generality	73
		3.3.2 Additional Sub-Types of Cases	74
		3.3.3 Additional Principles	75
	3.4	Applying SMMR	
		3.4.1 Descriptive Inference SMMR	80
		3.4.2 Causal Inference SMMR	86
	3.5 Conclusion		90
4	Conj	unctions	
	$A * B \Rightarrow Y$		
	4.1	Empirical Example	91
	4.2	The Challenge	95
	4.3	The Solutions	96
		4.3.1 Climbing the Ladder of Generality	97
		4.3.2 Additional Principles	98
		4.3.3 Additional Formulas	110
	4.4	Excursus: Necessary INUS Conditions	111
	4.5	Applying SMMR	118
		4.5.1 Descriptive Inference SMMR	119
	4.6	4.5.2 Causal Inference SMMR	126
	4.6	Conclusion	140

		Contents	vii		
5	5 INUS Conditions				
	A * B	$C + C * D \Rightarrow Y$	141		
	5.1	Empirical Example	142		
	5.2	Descriptive Inference SMMR	145		
	5.3	Causal Inference SMMR	150		
	5.4	Conclusion	159		
	5.5	Excursus: QCA Solution Types and Causal Inference			
		SMMR Designs	161		
6	Nece	essary Conditions	165		
	6.1	Basics, $A \leftarrow Y$	166		
		6.1.1 Empirical Example	166		
		6.1.2 Single-Case SMMR	168		
		6.1.3 Excursus: Forms of Broken Necessity Corridors	174		
		6.1.4 Comparative SMMR	178		
		6.1.5 Applying SMMR	186		
	6.2	Disjunctions, $A + B \Leftarrow Y$	193		
		6.2.1 Empirical Example	194		
		6.2.2 The Challenge	194		
		6.2.3 The Solutions	196		
		6.2.4 Applying SMMR	198		
	6.3	Conjunctions, $A * B \Leftarrow Y$	208		
		6.3.1 Empirical Example	209		
		6.3.2 The Challenge	210		
		6.3.3 The Solutions	210		
		6.3.4 Applying SMMR	215		
	6.4	Conclusion and Reflections on Necessary and	220		
		Sufficient Conditions, $A * B + C * D \Leftrightarrow Y$	220		
7		clusions – SMMR in Practice	222		
	7.1	SMMR Principles and Established Case Selection Rules	223		
	7.2	SMMR in Research Practice	225		
		7.2.1 SMMR and the Different Uses of QCA	225		
		7.2.2 Ideal-Typical vs. Applied SMMR	226		
		7.2.3 Nonmodel-Related SMMR Goals	227		
		7.2.4 Sequencing and Selecting SMMR Designs	228		
		7.2.5 Selective Focus on Some Disjuncts or Conjuncts	229		
	7.0	7.2.6 SMMR and Different Types of Sets	230		
	7.3	Outlook – Where Could and Should We Go from Here?	234		
		7.3.1 SMMR and Theory Evaluation	235		
		7.3.2 SMMR and the QCA Robustness Test Protocol	236		

viii		Contents	
	7.3.3	SMMR and Cluster Diagnostics	238
	7.3.4	SMMR and Time-Infused QCA Solutions	240
Appendix	SMM	R Principles	243
Glos	ssary		245
Refe	References		251
Inde	Index		258

Additional resources for this publication at https://doi.org/10.7910/DVN/ URMOVC

Figures

1.1	Causal mechanism linking supportive welfare regimes and low participatory inequality	6
1.2	XY plot: supportive welfare regime and low participatory inequal-	0
1.2	ity	6
1.3	Cross-case and within-case levels in SMMR	9
1.4	Flow chart of SMMR designs	15
2.1	XY plot: sufficient term for outcome "unpopular reforms" U	31
2.2	Cross-case condition and within-case level mechanism for out-	
	come "unpopular reforms"	33
2.3	2×2 table: sufficient term for outcome U	34
2.4	Types of cases, crisp-set SMMR	34
2.5	Types of cases, fuzzy-set SMMR	37
2.6	Visualizations of a test corridor	44
2.7	Forms of broken sufficiency corridors	47
2.8	Comparative SMMR designs	50
3.1	XY plot: sufficient term LD, outcome HC	70
3.2	XY plot: sufficient term LH, outcome HC	70
3.3	XY plot: solution formula $LD + LH$, outcome HC	71
3.4	Cross-case and within-case levels for outcome "high perceived	
	corruption"	72
4.1	XY plot: sufficient term $PD * RO$, outcome PC	94
4.2	Cross-case and within-case levels for outcome "no political	
	contestation"	94
4.3	iir case: unique FC nonmember and attribution principle – XY	
	plots	104
4.4	Typical cases: attribution principle – XY plots	105
4.5	Rank order of typical and iir case pairs for focal conjuncts in	
	sufficient conjunctions	109
4.6	Rank order of typical and iir case pairs for necessary conjunct in	
	sufficient conjunction	114

Х	Figures	
4.7	Necessary focal conjunct FC and forms of broken corridors M	116
5.1	XY plot: solution formula, outcome "low participatory inequal-	144
5.2	ity" <i>LPI</i> XY plot: term <i>LM</i> * <i>WC</i> , focal conjunct <i>WC</i> , and membership in mechanisms of typical and iir cases, outcome "low participatory	
5.0	inequality" LPI	153
5.3	XY plot: term <i>LM</i> * <i>WC</i> , focal conjunct <i>LM</i> , and membership in mechanisms, outcome "low participatory inequality" <i>LPI</i>	154
5.4	XY plot: term <i>LM</i> * <i>EP</i> , focal conjunct <i>EP</i> , and membership in mechanisms, outcome "low participatory inequality" <i>LPI</i>	159
5.5	XY plot: term $LM * EP$, focal conjunct LM , and membership in	
6.1	mechanisms, outcome "low participatory inequality" <i>LPI</i>	159
6.1	XY plot: necessary condition $\sim DEP$ for outcome "nonconflict" $\sim BDT$	168
6.2	Types of cases, crisp-set SMMR on necessity	169
6.3	Types of cases, fuzzy-set SMMR on necessity	170
6.4	Visualizations of test corridor, necessity	172
6.5	Forms of broken necessity corridors	174
6.6	Forms of feasible comparisons, necessity	179
6.7	XY plot: necessary disjunction $POV + COR$, outcome BDT	195
6.8	Cross-case and within-case levels for disjunctive necessity claim,	
	outcome "conflict"	196
6.9	XY plot: necessary conjunction $\sim ECOD + \sim EDU$, outcome <i>BDT</i>	210
6.10		210
0.10	Rank order of typical and iir case pairs for focal conjuncts in necessary conjunctions	213
7.1	SMMR and the QCA robustness test protocol	213
/ • 1	Similar and the Corribbabilions ton protocol	201

Tables

2.1	Most parsimonious solution for outcome "unpopular reforms" U	31
2.2	Types of cases and analytic goals of within-case analysis $(S \Rightarrow U)$	38
2.3	Comparative SMMR designs and their goals	50
2.4	Matching of typical and deviant consistency cases	51
2.5	Matching of deviant coverage and iir cases	53
2.6	Matching of a typical case and an iir case	55
2.7	Matching of two typical cases	56
2.8	Function smmr(), argument case for SMMR on sufficiency	59
3.1	Most parsimonious solution, outcome "high perceived corrup-	
	tion" HC	69
3.2	Uniquely covered, jointly covered, and globally uncovered cases	74
3.3	Scenarios for comparison of typical and iir cases	79
4.1	Most parsimonious solution, outcome "no political contestation"	
	$\sim PC$	93
4.2	iir FC unique nonmember principle	100
4.3	iir FC unique nonmember principle, example	101
4.4	iir Case: Unique FC nonmember and attribution principles	103
4.5	Rank order of possible membership constellations between the	
	focal conjunct and complementary conjuncts in a single typical	
	case	106
4.6	Rank order of possible membership constellations between the	
	focal conjunct and complementary conjuncts in a comparison of	
	two typical cases	107
4.7	Rank order of possible membership constellations between the	
	focal and complementary conjuncts in a comparison of typical	
	and iir cases in a sufficient conjunction	108
4.8	Sufficient conditions, outcome "high-tech export success"	
	EXPORT	112
5.1	Sufficient welfare regime conditions, outcome "low participatory	
	inequality" LPI, most parsimonious solution	142

xii	Tables	
5.2	Truth table, outcome "low participatory inequality" LPI	144
5.3	Causal status of QCA solution types in light of within-case	
	evidence	163
6.1	Necessary condition, outcome "nonconflict" ~ BDT	168
6.2	Types of cases and analytic goals of within-case analysis ($X \leftarrow Y$)	170
6.3	Forms of comparisons and their goals in SMMR, necessity	179
6.4	Matching of typical and deviant consistency cases, necessity	181
6.5	Matching of typical and deviant relevance cases, necessity	182
6.6	Matching of a typical case and an iir case, necessity	184
6.7	Matching of two typical cases, necessity	184
6.8	Function smmr(), argument case for SMMR on necessity	186
6.9	SUIN conditions, outcome "conflict" BDT	194
6.10	Uniquely covered, jointly covered, and globally uncovered cases,	
	necessity	197
7.1	Categorizing SMMR principles	224
A.1	List of SMMR principles	244

Preface

This book has been in the making, consciously and subconsciously, for quite a while. The conception of the idea of set-theoretic multi-method research (SMMR) as envisaged in this book can be traced back pretty clearly to one afternoon in the summer of 2012 in Ljubljana, Slovenia. I was teaching a course on qualitative comparative analysis (QCA) at the European Consortium For Political Research (ECPR) Summer School in Research Methods and Techniques and Ingo Rohlfing was teaching a course on case studies. We decided to hold one session together because in both our courses discussions kept coming up on how to best combine these two methods, which, clearly, do have an elected affinity. Our goal for this joint session was to present our first ideas and to discuss them with our students. The session went way over time and we left the room with the firm idea of condensing all that needs to be said about the combination of QCA and within-case analysis in one journal article. Well, here we are today, more than a decade later, after countless discussions, several conference presentations, a dedicated R function, and a handful of journal articles. This book is meant to consolidate, update, adjust, further refine, and comprehensively present in one place the insights gained over the past decade. In so doing, the goal of this book is to facilitate the understanding and practical use of SMMR.

As with any intellectual journey, one does not travel alone and I wish to thank my fellow travelers. First to mention here is Ingo Rohlfing with whom the project started. Throughout the years, we have jointly developed the SMMR framework on which this book is based. The adjustments and refinements to this framework that I offer in this book come in small, but sometimes crucial doses. For discussions on many of those new developments I am grateful to Nena Oana. Those exchanges of ideas often took place in relation to implementing SMMR into the R package SetMethods that Nena and I jointly develop. Nena's skills in making SMMR work in R have been

xiv

Preface

invaluable. My thanks also go to the many participants in courses on QCA that I have been teaching over the past years, both at my home institution, Central European University (CEU), and at methods schools organized by ECPR, Global School in Empirical Research Methods (GSERM), Institute for Qualitative and Multi-Method Research (IQMR), International Political Science Association (IPSA), MethodsNET, and many other institutions that kindly invited me to share my ideas. Along that way, I have been fortunate to work with brilliant co-instructors – next to Nena, these were at different times Patrick Emmenegger, Airo Hino, Patrick Mello, Charles Ragin, Benoît Rihoux, Eva Thomann, and Claudius Wagemann – and teaching assistants who critically commented on various aspects of the SMMR framwork as it evolved over the years: Priscilla Álamos Concha, Dominik Brenner, Marcos Campos, Adrian Dusa, Nidia Murrieta Roque, Ekataryna Paustyan, Alrik Thiem, and Barbora Valikova. Manuel Bosancianu helped me prepare data on the withincase level mechanism used in Chapter 5.

For feedback on my work on SMMR and for their pathbreaking (and sometimes breathtaking) contributions to set-theoretic methods in recent years, which represent the ground on which SMMR is built, I owe gratitude to Gary Goertz and Jim Mahoney. Making sure that room for discussion was provided, even in the difficult pandemic period during which most of this book has been written, is a huge achievement of the team organizing the annual QCA event in Zurich: Manuel Fischer, Julia Leib, Johannes Meuer, Sofia Pagliarin, Ryan Rumble, and Christian Rupietta.

My deepest thanks go to my family – Sheila, Leo, and Giulia – for all their loving support when writing large chunks of this book in the middle of a pandemic that our family experienced in our new home city Vienna. I'd also thank our dog Laica, but she refuses to read English.