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this book develops a toolkit of essential techniques for analyzing stochastic processes
on graphs, other random discrete structures, and algorithms.

The topics covered in this book include the first and second moment methods,
concentration inequalities, coupling and stochastic domination, martingales and po-
tential theory, spectral methods, and branching processes. Each chapter expands on a
fundamental technique, outlining common uses and showing them in action on sim-
ple examples and more substantial classical results. The focus is predominantly on
non-asymptotic methods and results.

All chapters provide a detailed background review section, plus exercises and
signposts to the wider literature. Readers are assumed to have undergraduate-level
linear algebra and basic real analysis, while prior exposure to graduate-level proba-
bility is recommended.

This much-needed broad overview of discrete probability could serve as a text-
book or as a reference for researchers in mathematics, statistics, data science, com-
puter science, and engineering.
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Preface

This book arose from a set of lecture notes prepared for a one-semester topics course I taught

at the University of Wisconsin–Madison in 2014, 2017, 2020, and 2023, which attracted a

wide spectrum of students in mathematics, computer sciences, engineering, and statistics.

What Is It About?

The purpose of the book is to provide a graduate-level introduction to discrete probabil-

ity. Topics covered are drawn primarily from stochastic processes on graphs: percolation,

random graphs, Markov random fields, random walks on graphs, and so on. No attempt is

made at covering these broad areas in depth. Rather, the emphasis is on illustrating important

techniques used to analyze such processes. Along the way, many standard results regarding

discrete probability models are worked out.

The “modern” in the title refers to the (nonexclusive) focus on non-asymptotic methods

and results, reflecting the impact of the theoretical computer science literature on the trajec-

tory of this field. In particular, several applications in randomized algorithms, probabilistic

analysis of algorithms, and theoretical machine learning are used throughout to motivate the

techniques described (although, again, these areas are not covered exhaustively).

Of course, the selection of topics is somewhat arbitrary and driven in part by personal

interests. But the choice was guided by a desire to introduce techniques that are widely used

across discrete probability and its applications. The material discussed here is developed in

much greater depth in the following (incomplete list of) excellent textbooks and expository

monographs, many of which influenced various sections of this book:

• Agarwal, Jiang, Kakade, Sun. Reinforcement Learning: Theory and Algorithms. [AJKS22]

• Aldous, Fill. Reversible Markov Chains and Random Walks on Graphs. [AF]

• Alon, Spencer. The Probabilistic Method. [AS11]

• B. Bollobás. Random graphs. [Bol01]

• Boucheron, Lugosi, Massart. Concentration Inequalities: A Nonasymptotic Theory of

Independence. [BLM13]

• Chung, Lu. Complex Graphs and Networks. [CL06]

• Durrett. Random Graph Dynamics. [Dur06]

• Frieze and Karoński. Introduction to Random Graphs. [FK16]

• Grimmett. Percolation. [Gri10b]

• Janson, Luczak, Rucinski. Random Graphs. [JLR11]

• Lattimore, Szepesvári. Bandit Algorithms. [LS20]

xi
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xii Preface

• Levin, Peres, Wilmer. Markov Chains and Mixing Times. [LPW06]

• Lyons, Peres. Probability on Trees and Networks. [LP16]

• Mitzenmacher, Upfal. Probability and Computing: Randomized Algorithms and Proba-

bilistic Analysis. [MU05]

• Motwani, Raghavan. Randomized Algorithms. [MR95]

• Rassoul-Agha, Seppäläinen. A Course on Large Deviations with an Introduction to Gibbs

Measures. [RAS15]

• S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to

Algorithms. [SSBD14]

• van Handel. Probability in High Dimension. [vH16]

• van der Hofstad. Random Graphs and Complex Networks. Vol. 1. [vdH17]

• Vershynin. High-Dimensional Probability: An Introduction with Applications in Data

Science. [Ver18]

In fact, the book is meant as a first foray into the basic results and/or toolkits detailed in

these more specialized references. My hope is that, by the end, the reader will have picked

up sufficient fundamental background to learn advanced material on their own with some

ease. I should add that I used many additional helpful sources; they are acknowledged in

the “Bibliographic Remarks” at the end of each chapter. It is impossible to cover everything.

Some notable omissions include, for example, graph limits [Lov12], influence [KS05], and

group-theoretic methods [Dia88], among others. Much of the material covered here (and

more) can also be found in [HMRAR98], [Gri10a], and [Bre17] with a different emphasis

and scope.

Prerequisites

It is assumed throughout that the reader is fluent in undergraduate linear algebra, for exam-

ple, at the level of [Axl15], and basic real analysis, for example, at the level of [Mor05].

In addition, it is recommended that the reader has taken at least one semester of graduate

probability at the level of [Dur10]. I am also particularly fond of [Wil91], which heavily

influenced Appendix B, where measure-theoretic background is reviewed. Some familiarity

with countable Markov chain theory is necessary, as covered for instance in [Dur10, chap-

ter 6]. An advanced undergraduate or Master’s level treatment such as [Dur12], [Nor98],

[GS20], [Law06], or [Bre20] will suffice, however.

Organization of the Book

The book is organized around five major “tools.” The reader will have likely encountered

those tools in prior probability courses. The goal here is to develop them further, specifically

with their application to discrete random structures in mind, and to illustrate them in this

setting on a variety of major classical results and applications.

In the interest of keeping the book relatively self-contained and serving the widest spec-

trum of readers, each chapter begins with a “background” section that reviews the basic
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Preface xiii

material on which the rest of the chapter builds. The remaining sections then proceed to ex-

pand on two or three important specializations of the tools. While the chapters are meant to

be somewhat modular, results from previous chapters do occasionally make an appearance.

The techniques are illustrated throughout with simple examples first, and then with more

substantial ones in separate sections marked with the symbol F. I have attempted to pro-

vide applications from many areas of discrete probability and theoretical computer science,

although some techniques are better suited for certain types of models or questions. The

examples and applications are important: many of the tools are quite straightforward (or

even elementary), and it is only when seen in action that their full power can be appreciated.

Moreover, the F sections serve as an excuse to introduce the reader to classical results and

important applications – beyond their reliance on specific tools.

Chapter 1 introduces some of the main probability on graph models we come back to

repeatedly throughout the book. It begins with a brief review of graph theory and Markov

chain theory.

Chapter 2 starts out with the probabilistic method, including the first moment principle

and second moment method, and then it moves on to concentration inequalities for sums of

independent random variables, mostly sub-Gaussian and sub-exponential variables. It also

discusses techniques to analyze the suprema of random processes.

Chapter 3 turns to martingales. The first main topic there is the Azuma–Hoeffding in-

equality and the method of bounded differences with applications to random graphs and

stochastic bandit problems. The second main topic is electrical network theory for random

walks on graphs.

Chapter 4 introduces coupling. It covers stochastic domination and correlation inequali-

ties as well as couplings of Markov chains with applications to mixing. It also discusses the

Chen–Stein method for Poisson approximation.

Chapter 5 is concerned with spectral methods. A major topic there is the use of the spectral

theorem and geometric bounds on the spectral gap to control the mixing time of a reversible

Markov chain. The chapter also introduces spectral methods for community recovery in

network analysis.

Chapter 6 ends the book with applications of branching processes. Among other applica-

tions, an introduction to the reconstruction problem on trees is provided. The final section

gives a detailed analysis of the phase transition of the Erdős–Rényi graph, where techniques

from all chapters of the book are brought to bear.
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Notation

Throughout the book, we will use the following notation.

• The real numbers are denoted by R, the non-negative reals are denoted by R+, the integers

are denoted by Z, the non-negative integers are denoted by Z+, the natural numbers (i.e.,

positive integers) are denoted by N, and the rational numbers are denoted by Q. We will

also use the notation Z+ := {0, 1, . . . , +∞}.

• For two reals a, b ∈ R,

a ∧ b := min{a, b}, a ∨ b := max{a, b},

and

a+ = 0 ∨ a, a− = 0 ∨ (−a).

• For a real a, bac is the largest integer that is smaller than or equal to a and dae is the

smallest integer that is larger than or equal to a.

• For x ∈ R, the natural (i.e., base e) logarithm of x is denoted by log x. We also let NATURAL

LOGARITHMexp(x) = ex.

• For a positive integer n ∈ N, we let

[n] := {1, . . . , n}.

• The cardinality of a set A is denoted by |A|. The powerset of A is denoted by 2A.

• For two sets A, B, their Cartesian product is denoted by A × B.

• We will use the following notation for standard vectors: 0 is the all-zero vector, 1 is the

all-one vector, and ei is the standard basis vector with a 1 in coordinate i and 0 elsewhere.

In each case, the dimension is implicit, as well as whether it is a row or column vector.

• For a vector u = (u1, . . . , un) ∈ Rn and real p > 0, its p-norm (or `p-norm) is p-NORM

‖u‖p :=

(

n
∑

i=1

|ui|
p

)1/p

.

When p = +∞, we have

‖u‖∞ := max
i

|ui|.

We also use the notation ‖u‖0 to denote the number of non-zero coordinates of u (although

it is not a norm; see Exercise 1.1). For two vectors u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Rn,

their inner product is INNER

PRODUCT

xv
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xvi Notation

〈u, v〉 :=

n
∑

i=1

uivi.

The same notations apply to row vectors.

• For a matrix A, we denote the entries of A either by A(i, j) or by Ai,j (unless otherwise

specified). The ith row of A is denoted by A(i, ·) or Ai,·. The jth column of A is denoted by

A(·, j) or A·,j. The transpose of A is AT .

• For a vector z = (z1, . . . , zd), we let diag(z) be the diagonal matrix with diagonal entries

z1, . . . , zd.

• The binomial coefficients are defined asBINOMIAL

COEFFICIENTS (

n

k

)

=
n!

k!(n − k)!
,

where k, n ∈ N with k ≤ n and n! = 1 × 2 × · · · × n is the factorial of n. Some stand-

ard approximations for
(

n

k

)

and n! are listed in Appendix A. See also Exercises 1.2, 1.3,

and 1.4.

• We use the abbreviation “a.s.” for “almost surely,” that is, with probability 1. We use

“w.p.” for “with probability.”

• Convergence in probability is denoted as →p. Convergence in distribution is denoted

as
d

→.

• For a random variable X and a probability distribution µ, we write X ∼ µ to indicate that

X has distribution µ. We write X
d
= Y if the random variables X and Y have the same

distribution.

• For an event A, the random variable 1A is the indicator of A, that is, it is 1 if A occurs and

0 otherwise. We also use 1{A}.

• For probability measures µ, ν on a countable set S, their total variation distance isTOTAL

VARIATION

DISTANCE ‖µ − ν‖TV := sup
A⊆S

|µ(A) − ν(A)|.

• For non-negative functions f (n), g(n) of n ∈ Z+, we write f (n) = O(g(n)) if there exists

a positive constant C > 0 such that f (n) ≤ Cg(n) for all n large enough. Similarly,

f (n) = �(g(n)) means that f (n) ≥ cg(n) for some constant c > 0 for all n large enough.

The notation f (n) = 2(g(n)) indicates that both f (n) = O(g(n)) and f (n) = �(g(n))

hold. We also write f (n) = o(g(n)) or g(n) = ω(f (n)) or f (n) � g(n) or g(n) � f (n) if

f (n)/g(n) → 0 as n → +∞. If f (n)/g(n) → 1 we write f (n) ∼ g(n). The same notations

are used for functions of a real variable x as x → +∞.
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