
Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents

Preface page xiii

Introduction 1

Part I Iterative Algorithms and Loop Invariants

1 Iterative Algorithms: Measures of Progress and Loop Invariants 5

1.1 A Paradigm Shift: A Sequence of Actions vs. a Sequence of Assertions 5

1.2 The Steps to Develop an Iterative Algorithm 9

1.3 More about the Steps 13

1.4 Different Types of Iterative Algorithms 21

1.5 Code from Loop Invariants 28

1.6 Typical Errors 31

1.7 Exercises 32

2 Examples Using More-of-the-Input Loop Invariants 33

2.1 Coloring the Plane 33

2.2 Deterministic Finite Automaton 35

2.3 More of the Input vs. More of the Output 42

3 Abstract Data Types 47

3.1 Specifications and Hints at Implementations 47

3.2 Link List Implementation 55

3.3 Merging with a Queue 61

3.4 Parsing with a Stack 62

4 Narrowing the Search Space: Binary Search 64

4.1 Binary Search Trees 64

4.2 Magic Sevens 66

4.3 VLSI Chip Testing 68

4.4 Exercises 72

5 Iterative Sorting Algorithms 74

5.1 Bucket Sort by Hand 74

www.cambridge.org/9781009302142
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

viii Contents

5.2 Counting Sort (a Stable Sort) 75

5.3 Radix Sort 78

6 More Iterative Algorithms 80

6.1 Euclid’s GCD Algorithm 80

6.2 Multiplying 84

7 The Loop Invariant for Lower Bounds 88

8 Key Concepts Summary: Loop Invariants and Iterative Algorithms 97

8.1 Loop Invariants and Iterative Algorithms 97

8.2 System Invariants 99

9 Additional Exercises: Part I 102

10 Partial Solutions to Additional Exercises: Part I 124

Part II Recursion

11 Abstractions, Techniques, and Theory 133

11.1 Thinking about Recursion 133

11.2 Looking Forward vs. Backward 134

11.3 With a Little Help from Your Friends 135

11.4 The Towers of Hanoi 138

11.5 Checklist for Recursive Algorithms 139

11.6 The Stack Frame 144

11.7 Proving Correctness with Strong Induction 146

12 Some Simple Examples of Recursive Algorithms 149

12.1 Sorting and Selecting Algorithms 149

12.2 Operations on Integers 157

12.3 Ackermann’s Function 162

12.4 Fast Fourier Transformations 163

12.5 Exercise 168

13 Recursion on Trees 169

13.1 Tree Traversals 174

13.2 Simple Examples 177

13.3 Heap Sort and Priority Queues 180

13.4 Representing Expressions with Trees 187

14 Recursive Images 192

14.1 Drawing a Recursive Image from a Fixed Recursive and a Base Case

Image 192

14.2 Randomly Generating a Maze 195

www.cambridge.org/9781009302142
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents ix

15 Parsing with Context-Free Grammars 198

16 Key Concepts Summary: Recursion 208

17 Additional Exercises: Part II 211

18 Partial Solutions to Additional Exercises: Part II 230

Part III Optimization Problems

19 Definition of Optimization Problems 241

20 Graph Search Algorithms 243

20.1 A Generic Search Algorithm 243

20.2 Breadth-First Search for Shortest Paths 248

20.3 Dijkstra’s Shortest-Weighted-Path Algorithm 253

20.4 Depth-First Search 259

20.5 Recursive Depth-First Search 263

20.6 Linear Ordering of a Partial Order 264

20.7 Exercise 267

21 Network Flows and Linear Programming 268

21.1 A Hill-Climbing Algorithm with a Small Local Maximum 270

21.2 The Primal–Dual Hill-Climbing Method 276

21.3 The Steepest-Ascent Hill-Climbing Algorithm 284

21.4 Linear Programming 288

21.5 Exercises 293

22 Greedy Algorithms 294

22.1 Abstractions, Techniques, and Theory 294

22.2 Examples of Greedy Algorithms 307

22.3 Exercises 320

23 Recursive Backtracking 321

23.1 Recursive Backtracking Algorithms 321

23.2 The Steps in Developing a Recursive Backtracking 325

23.3 Pruning Branches 329

23.4 Satisfiability 331

23.5 Exercises 334

24 Dynamic Programming Algorithms 336

24.1 Start by Developing a Recursive Backtracking Algorithm 336

24.2 The Steps in Developing a Dynamic Programming Algorithm 340

24.3 Subtle Points 346

www.cambridge.org/9781009302142
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

x Contents

24.4 The Longest-Common-Subsequence Problem 364

24.5 Dynamic Programs as More-of-the-Input Iterative Loop Invariant

Algorithms 368

24.6 A Greedy Dynamic Program: The Weighted Job/Event Scheduling

Problem 371

25 Designing Dynamic Programming Algorithms via Reductions 375

26 The Game of Life 380

26.1 Graph G from Computation 380

26.2 The Graph of Life 382

26.3 Examples of the Graph of Life 385

27 Solution Is a Tree 390

27.1 The Solution Viewed as a Tree: Chains of Matrix Multiplications 390

27.2 Generalizing the Problem Solved: Best AVL Tree 395

27.3 All Pairs Using Matrix Multiplication 397

27.4 Parsing with Context-Free Grammars 398

28 Reductions and NP-Completeness 402

28.1 Satisfiability Is at Least as Hard as Any Optimization Problem 404

28.2 Steps to Prove NP-Completeness 407

28.3 Example: 3-Coloring Is NP-Complete 415

28.4 An Algorithm for Bipartite Matching Using the Network Flow

Algorithm 419

29 Randomized Algorithms 423

29.1 Using Randomness to Hide the Worst Cases 423

29.2 Solutions of Optimization Problems with a Random Structure 427

30 Machine Learning 431

31 Key Concepts Summary: Greedy Algorithms and Dynamic Programming 439

31.1 Greedy Algorithms 439

31.2 Dynamic Programming 444

32 Additional Exercises: Part III 454

32.1 Graph Algorithms 454

32.2 Greedy Algorithms 457

32.3 Dynamic Programming 465

32.4 Reductions and NP-Completeness 476

33 Partial Solutions to Additional Exercises: Part III 482

33.1 Graph Algorithms 482

www.cambridge.org/9781009302142
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents xi

33.2 Greedy Algorithms 482

33.3 Dynamic Programming 485

33.4 Reductions and NP-Completeness 492

Part IV Additional Topics

34 Existential and Universal Quantifiers 499

35 Time Complexity 508

35.1 The Time (and Space) Complexity of an Algorithm 508

35.2 The Time Complexity of a Computational Problem 513

36 Logarithms and Exponentials 515

37 Asymptotic Growth 518

37.1 Steps to Classify a Function 519

37.2 More about Asymptotic Notation 525

38 Adding-Made-Easy Approximations 529

38.1 The Technique 530

38.2 Some Proofs for the Adding-Made-Easy Technique 534

39 Recurrence Relations 540

39.1 The Technique 540

39.2 Some Proofs 543

40 A Formal Proof of Correctness 549

41 Additional Exercises: Part IV 551

41.1 Existential and Universal Quantifiers 551

41.2 Time Complexity 553

41.3 Asymptotic Growth 554

41.4 Adding Made-Easy Approximations 554

42 Partial Solutions to Additional Exercises: Part IV 556

42.1 Existential and Universal Quantifiers 556

42.2 Time Complexity 560

Exercise Solutions 561

Conclusion 588

Index 589

www.cambridge.org/9781009302142
www.cambridge.org

