
Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Index

abstract data type (ADT), 1, 47

functions vs., 47

merging with queue, 61

specifications/implementations, 47

AVL tree, 53

binary search tree, 53

dictionary, 51

graphs, 51

link list implementation, 55

list, 47

orders, 53

parsing with stack, 62

priority queue, 50

queue, 49

recursive definition of tree, 169

set, 50

set system, 50

simple types, 48

stack, 48

trees, 52

union-find set system, 53

Ackermann’s function, 162

algorithm, 162

crashing, 163

recurrence relation, 162

running time, 163

solving, 162

adding-made-easy approximations, 537

examples, 537

exercise solutions, 586

proofs, 538

analytical functions, simple, 538

arithmetic sums, 536

close to harmonic, 537

functions, without basic form, 537

geometric sums, simple, 534

harmonic sum, 537

ratio between terms, 534

solution classes, 530

technique, 530

ADT, See abstract data type

algorithms, See also recursive algorithms

Ackermann’s function, 162

best AVL tree bird-and-friend algorithm, 396

bipartite matching using network flow, 419

brute force algorithm, 69, 294

defined, 1

Dijkstra’s shortest-weighted path algorithm, 253

dynamic programming algorithms and examples,

338

all pairs, matrix multiplication, 397

best AVL tree, 397

chains of matrix multiplications, 390

context-free grammar parsing, 398

dynamic programming algorithms. via

reductions, 338

longest increasing contiguous subsequence

example, 369

longest increasing subsequence example, 370

longest-common-sequence problem, 364

shortest weight path, directed leveled graph

example, 337

weighted job/event scheduling problem, 371

Euclid’s greatest common divisor (GCD)

algorithm, 80

graph algorithms

expander graphs, 428

max cut problem, 428

minimum spanning tree, 314

network flows, 268

shortest weight path, directed leveled graph

example, 337

3-Colouring, 408, 419

graph search algorithms, 243

breadth-first search, shortest path, 248, 250

depth-first search, 259

generic search algorithm, 243

partial order linear ordering, 265

depth-first search algorithm, 265

easy but slow algorithm, 265

recursive depth-first search, 263

greedy algorithms, 294, 330, 367, 395

hill-climbing algorithm, 290

iterative algorithms, 9, 13, 21

www.cambridge.org/9781009302142
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

590 Index

iterative sorting algorithms, 74, 75, 78

looking forward vs. backward, recursive

algorithms, 134

meta-algorithms, xiii, 2

parsing algorithm specifications, 199

randomized algorithms, 428

sorting and selection algorithms, 423

steepest-ascent hill-climbing algorithm, 149

Strassen’s matrix multiplication, 161, 284

time/space complexity, 83, 508, 518, 579, 582

analytical functions, simple, 538

arithmetic sums, 536 See also adding-made-easy

approximations,

asymptotic growth

asymptotic growth rate, 518

asymptotic notation, 88, 518, 519

BigOh definition, 88, 525

Little Oh definition, 525

Little Omega definition, 525

loop invariant for lower bounds, 80

Theta definition, 88, 518

exercise solutions, 586

function classification, 518

growth rates classes, 518

purpose, 518

AVL tree, 53

best AVL tree, 395

best AVL tree problem, 396

binary search, 24

for cost in optimization problems, 407

narrowing the search space example, 22

returning index example, 91

returning yes/no, 93

trees, 53, 64

ADT, 50

balanced, 53

basic steps, 64

best binary search tree problem, 395

coding/implementation details, 65

ending, 65

establishing loop invariant, 64

exit condition, 65

is tree a binary tree example, 177

loop invariant, 64

main steps, 65

maintain loop invariant, 65

make progress, 65

measure of progress, 64

nodes in binary search tree example, 174

running time, 65

specifications, 64

typical errors, 31

binary trees, recursion, 209

BigOh definition, 526

bipartite edges, 261

bipartite matching using network flow, 419

breadth-first search, 248

shortest path, 248, 249

code, 251

exiting loop, 252

initial code, 252

loop body, 244

loop invariant, 245

maintaining loop invariant, 245

optimization problem, 248

shortest path problem, 248

shortest path proof, 251

bucket sort by hand, 74

basic steps, 74

exit condition, 75

loop invariant, 75

maintain loop invariant, 75

specifications, 74

chains of matrix multiplications, 390

failed dynamic programming algorithm, 391

failed greedy algorithm, 391

little bird question, 391

optimal solution construction, 394

optimal solution cost, cost for subinstances, 392

recursive structure, 392

reduced to subinstance, 392

set of subinstances called, 392

table fill order, 392

table indexed by subinstances construction, 392

time/space requirements, 394

coloring the plane, 33

basic steps, 33

coding/implementation details, 34

ending, 34

establishing loop invariant, 34

exit condition, 34

loop invariant, 34

main steps, 34

maintain loop invariant, 34

measure of progress, 34

running time, 34

special cases, 34

specifications, 33

computational complexity, 1

asymptotic notations, 88, 518, 525

formal proof of correctness, 549

nondeterministic polynomial-time decision

problems (NP), 408

time/space complexity, 83, 425, 508, 519, 548,

584

context-free grammar parsing, 198

abstract data type parsing, 199

correctness proof, 205

dynamic programming example

abstract data type parsing, 399

base cases, 400

help from friend, 400

www.cambridge.org/9781009302142
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Index 591

little bird question, 399

not look ahead one, 399

number of parsings, 399

optimal solution construction, 400

parsing problem, 399

set of subinstances, 400

table fill order, 400

table indexed by subinstances construction,

400

exercise solutions, 578

expression parsing, 199

GetExp code, 201

GetExp expressions, 201

GetExp, Get Term, GetFact examples, 201

GetFact code, 203

GetTerm code, 203

grammar, 198

look ahead one, 198, 205

nonterminals, 199

parsing algorithm specifications, 199

rules, 199

running time, 204

semantics and, 198

string derivation, 198

syntax and, 198

terminals, 199

tree of stack frames, 204

correctness, 2

formal proof of correctness, 549

for context- free grammar parsing, 199

for depth-first search, 265

for dynamic programming, 353

for greedy algorithms, 321

for recursive algorithms, by strong induction,

147

counting sort, 75

basic steps, 76

code, 77

establishing loop invariant, 77

exit condition, 77

loop invariant, 77

main step, 77

maintain loop invariant, 77

running time, 77

specifications, 75

cyclic edges, 261

Davis–Putnam, 331

depth-first search, 247, 259

code, 259

edges classification, 261

establish/maintain loop invariant, 260

generic search algorithm changes, 259

loop invariants, 259

recursive, 263

time stamping, 262

deterministic finite automation (DFA), 35

addition example, 39

applications, 35

calculator example, 40

compiling iterative program into DFA, 37

division example, 40

dynamic programming, 41

longest block of ones example, 41

longest increasing contiguous subsequence, 42

longest increasing subsequence, 42

dictionary ADT, trees, data structure, 52–53

Dijkstra’s shortest-weighted-path algorithm, 253

code, 255

exiting loop, 258

initial code, 258

loop body, 255

loop invariant, 255

maintaining LI1, 256

maintaining LI2, 256

problem specifications, 253

shortest distance approximation, 253

shortest path proof, 251

dynamic programming, 336, 444–453

algorithm using trusted bird and friend, 445

can’t reduce, 453

cutting task into two independent tasks, 451–452

exercise solutions, 585, 586

G as the graph of life, 450

nodes of G are subinstances, 449–450

recursive backtracking, 336, 449

running time, 340

recursive backtracking algorithm, 445

reduction of any dynamic programming

algorithm to LeveledGraph, 448

running time, 453

specifications, 445

steps in developing, 336

base cases, 344

code, 345

count subinstances, 343

final solution, 344

redundancy, 341

running time, 346

set of subinstances, 341

solution from subsolutions, 343

table fill order, 344

table indexed by subinstances construction,

343

subtle points, 346

dynamic programming algorithms via reductions,

375

best path similarity, 375

bigger-is-smarter elephant problem, 379

event scheduling problem, 375

graph instance formation, 376

mapping back algorithm, 377

dynamic programming algorithms and examples

www.cambridge.org/9781009302142
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

592 Index

all pairs, matrix multiplication, 397

best AVL tree, 395

best AVL tree problem, 396

best binary search tree, 395

chains of matrix multiplications, 390

context-free grammar parsing, 398

dynamic programming algorithms. via

reductions, 375

longest increasing contiguous subsequence

example, 369

longest increasing subsequence example, 370

time/space requirements, 368

longest-common-sequence problem, 364

base cases, 365

code, 366

greedy algorithm, 364

information about subinstance, 367

little bird possible answers, 364

little bird question, 365

longest common sequence, 364

optimal solution construction, 367

set of subinstances, 365

table fill order, 366

table indexed by subindexes construction, 365

time/space requirements, 368

shortest weight path, directed leveled graph

example, 337

weighted job/event scheduling problem, 371

failed algorithms, 371

greedy dynamic programming, 372

edges classification, 261

back edges, 261

bipartite edges, 261

cross edges, 261

cyclic edges, 261

forward edges, 261

tree edges, 261

Euclid’s GCD algorithm, See greatest common

divisor algorithm

bug, 86

code, 86

elementary school algorithm, 84

ending with postcondition, 85

Ethiopians, 87

have codeloop, 85

have (loop-invariant), 85

head in the right direction & return to path, 85

high school algorithm, 86, 87

LHS vs. RHS, 85, 86

loop invariant, 84

maintaining the loop invariant, 85, 86

make progress, 86

preconditions, 85

running time, 85, 86

Euler cycle, 44

event scheduling, 307

weighted job/event scheduling problem, 371

existential/universal quantifiers, 500, 513

bound variables definition, 500

combining quantifiers, 500

exercise solutions, 585

expressions building, 501

free variables definition, 500

Loves example, 499

negation, 502

quantifiers order, 502

relation definition, 501

representations, 499

variable domain, 502

exponentials, 515

base, 517

exercise solutions, 585

ratio, 517

rules, 515

uses, 515

fast Fourier transformation, 161

Fast Fourier Transformations (FFT), 163–168

code, 165

FFT (FFT (F(t)) = n · F(t), 167

interpolations, 164

inverse sin-cos-FFT, 167

multiplying, 167

my input, 164

my output, 164

n values of x, 164

nth roots of unity, 167

nth roots of unity are special, 165

radians, 167

recursion, 164

rotating the plane, 166

special values, 164

splitting the input, 164

tth value of x and fth term/frequency, 167

FFT, see Fast Fourier Transformations

find-max two-finger algorithm example, 11

forward/cross edges, 261

friends level of abstraction, recursive algorithms,

135

base cases, 137

general input, 135

generalizing problem, 136

link to techniques, iterative algorithms, 137

minimizing number of cases, 136

running time, 137

size, 135

specifications, 135

functions, See also Ackermann’s function

abstract data types vs., 47

analytical functions, simple, 538

linear function, 523

quadratic function, 523

time/space complexity as, 508

www.cambridge.org/9781009302142
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Index 593

game of life, 380–389, see also graph of life

graph G from computation, 380

sequence of actions vs. a sequence of assertions,

5

GCD, see Euclid’s GCD algorithm

GCD algorithm, See greatest common divisor

(GCD) algorithm

geometric sums, simple, 534

GetExp code, 201

GetExp expressions, 199

GetExp, Get Term, GetFact examples, 201

GetExp reasoning, 201

GetFact code, 203

GetFact reasoning, 203

GetTerm code, 203

global vs. local considerations, 270, 274, 291, 295,

322, 347

graph algorithms

expander graphs, 428

max cut problem, 428

minimum spanning tree, 314

network flows, 268

shortest weight path, directed leveled graph

example, 337

3-Colouring, 408, 415

graph of life, 382–389, see also game of life

actions vs. landmarks, 382

algorithm 1 – maximize cash on day t, 387

algorithm 2 – maximize stock s at time t, 388

algorithm 3 – two types of states and atomic

actions, 388

assertions, 382

buy stock, 389

cutting a task into two independent subinstances,

383

edge cost, 384

edge length, 384

examples, 385–389

finding optimal path, 384

forgetting, 383

G as the graph of life, 450

goal to find optimal path, 384

knapsack, 385

little bird, 384

longest common subsequence, 386

path of life, 382

printing neatly, 387

produce the solution Sol, 383

pseudocode execution, 382

reading the input I , 383

resource, 383

running time, 384

sell stock, 389

sitting on cash, 388

sitting on stock, 389

states and possible actions, 383

stock problem, 387

TM & DFA, 382

graph search algorithms, 243

breadth-first search, shortest path, 247, 248

depth-first search, 259

Dijkstra’s shortest-weighted-path algorithm, 253

exercise solutions, 575

generic search algorithm, 243

basic steps, 243

code, 245

exit condition, 246

exiting loop, 246

handling nodes order, 247

initial code, 246

loop body, 244

loop invariant, 244

maintaining loop invariant, 245

measure of progress, 245

reachability problem, 243

running time, 247

partial order linear ordering, 265

recursive depth-first search, 263

graph theory problems, 243

greatest common divisor (GCD) algorithm, 80

code, 82

ending, 80, 82

establishing loop invariant, 80

example, 82

exercise solutions, 570

exit condition, 82

iteration on general instance, 80, 81

loop invariant, 80

lower bound, 83

making progress, 81

recursive, 160

running time, 80

special cases, 81

specifications, 80

termination, 82

greatest common divisor algorithm (GCD), see

Euclid’s GCD algorithm

greedy algorithms, 294, 439–444

alternative proof, 303

brute force algorithm, 294

correctness proof, 299

using loop invariants, 296

definition of correct, 303

does not go down, 303

does not go up, 303

examples

game show, 295

interval cover problem, 310

job/event scheduling problem, 307

minimum spanning tree problem, 314

exercise solutions, 575

exiting loop, 440, 444

www.cambridge.org/9781009302142
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

594 Index

first order logic, 304

fix problems, 301

fixity vs. adaptive priority, 304

game, 304

game as proof, 304

globally optimal step, 303

greedy choice, 295, 439

greedy game, 304

head in the right direction & return to path, 301

initially ((pre ⇒ LI)), 300

instructions for modifying, 300

locally optimal step, 303

loop invariant, 297, 441

loop invariants, types, 296

specifications, 294

make St consistent, 301

making change example, 300

many cases, 301

postcondition, 294

potentialVal(At ), 303

proof, 303

proof globally optimal, 304

proving, 304

proving that she has a witness, 302

specifications, 439

taking a step, 300

theorem, 303

three players, 300

tree of options, 301

using, 304

what we know, 300

harmonic sum, 537

close to harmonic, 537

heap sort/priority queues, 180

array implementation, balanced binary tree, 180

common mistakes, 186

completely balanced binary tree, 180

heap definition, 180

heapify problem, 181

code, 181

iterative algorithm, 182

recursive algorithm, 181

running time, 182, 183

specifications, 181

heapsort problem, 184

algorithm, 184

array implementation, 184

code, 185

specification, 184

makeheap problem, 183

iterative algorithm, 183

recursive algorithms, 183

running time, 184

specifications, 183

priority queues, 186

hill-climbing algorithm, See also primal-dual hill

climbing method; steepest-ascent

hill-climbing algorithm, 290

small local maximum, 270

algorithm, faulty, 272

algorithm fixing, 274

augmentation graph, faulty, 272

basic ideas, 270

counterexample, 274

local maximum, 274

image drawing, See recursive image drawing

information hiding, 47

information theoretic lower bounds, 92, 93

iterative algorithms, 9, 13

basic steps, 14

code structure, 9

coding/implementation details, 20

conservation of energy, 26

correctness proof, 10

differential equations, 27

ending, 19

establishing loop invariant, 18

exit condition, 19

find-max two fingeralgorithm example, 11

formal proof, 20

loop invariants, 28

loop invariants for, 9, 14, 16

main steps, 17

maintain loop invariant, 17

make progress, 17

measure of progress, 14

running time, 10, 20

search space narrowing, 22

binary search narrowing example, 24

special cases, 20

specification, 13

types of iterative algorithms, 21

case analysis, 23

insertion sort example, 24

more of input, 22

more of output, 22

selection sort example, 23

work done, 23

bubble sort example, 26

iterative sorting algorithms

bucket sort by hand, 74

counting sort, 75

radix sort, 78

job/event scheduling, See event scheduling

kth smallest element example, 152

Las Vegas model, 424

linear function, 531

linear programming, See also network flow, 288

Euclidean space interpretation, 289

www.cambridge.org/9781009302142
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Index 595

example, 289

formal specification, 289

hill-climbing algorithm, 290

matrix representation, 289

network flows, 289

running time, 292

small local maximum, 291

link list implementation, 55

adding node to end, 57

adding node to front, 56

deleting node, 60

hidden invariants, 56

initialize walk, 58

notation, 56

removing node from end, 57

removing node from front, 57

testing whether empty, 57

walking down linked list, 57

Little Oh definition, 525, 527

Little Omega definition, 525, 527

logarithms, 515

base, 517

exercise solutions, 584

ratio, 517

rules, 515

uses, 515

longest block of ones example, 41

longest increasing contiguous subsequence

example, 369

longest increasing subsequence example, 370

longest-common-sequence problem, 241, 364

base cases, 365

code, 366

greedy algorithm, 364

little bird possible answers, 364

little bird question, 365

longest common sequence, 364

optimal solution construction, 367

set of subinstances, 365

table fill order, 366

table indexed by subindexes construction, 365

time/space requirements, 368

looking forward vs. backward, recursive

algorithms, 134

algorithm, 134

loop invariant for lower bounds, 88

asymptotic notation, 88

binary search returning index example, 91

binary search returning yes/no, 93

dynamic algorithms, 92

exercise solutions, 565

flipping a bit, 92

loop invariant argument, 89

lower bounds proof, state of art, 94

multiplexer example, 93

parity example, 92, 93

sorting example, 90

time complexity, 88

upper bound, algorithm, 88

loop invariants, 97–101

code from loop invariants, 28

defining, 97

exit condition, 99

greedy algorithms, 297

initializing the system, 101

iterative algorithms, 28

maintaining the loop invariant, 98

maintaining the system invariants, 100

obtaining the postcondition, 99, 101

operation specification, 101

private invariants, 100

public invariants, 100

relationship to system invariants, 100

running time, 99

specification, 97

step, 97

loop invariants for iterative algorithms, 9, 14, 16

lower bounds, see also loop invariant for lower

bounds, 83, 88, 94, 334, 402, 565, 577

for GCD, 83

loop invariant for lower bounds, 88

lower bounds proof, state of art, 94

reductions, 402

machine learning, 431–438

abstract thinking, 432

algorithm, 434

blind, 433

cat, 432

coding, 431

compression, 434

convolution and recurrent layer, 438

correlation of vectors, 436

error, 433

error surface, 433

evolution, 431

generalizing, 434

gradient descent, 433

hopeful applications, 431

linear and non-linear regression, 432, 433

linear layer = matrix multiplication, 436

machine, 432

neural networks, 433

non-linear layer, 437

overfitting, 434

regularization, 435

scary applications, 431

singularity, 438

smooth/differentiable, 434

supervised training data, 432

theory: Learnable Probably Approximately

Correct (PAC), 435

underfitting, 434

www.cambridge.org/9781009302142
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

596 Index

vectors, 436

magic sevens, 66

basic steps, 67

establishing loop invariant, 67

exit condition, 67

loop invariant, 67

maintain loop invariant, 67

running time, 67

specifications, 66

matrix multiplication

all pairs, 397

chains of, solution as tree, 390

Strassen’s matrix multiplication example, 161

measures of progress, loop invariants, 5

merge sort example, 149

merging with queue, 61

meta-algorithms, xiii, 2

min cut specification, 269

Monte Carlo model, 424

more of input, 22

more-of the-output loop invariant algorithms, 22

Euler cycle example, 44

selection sort example, 23

more-of-the-input iterative loop invariant

algorithms, 22, 34, 70, 136, 296, 368,

562

coloring the plane example, 33

deterministic finite automation, 35

exercise solutions, 562

in dynamic programming

longest increasing contiguous subsequence

example, 369

longest increasing subsequence example, 370

in greedy algorithms, 296

in VLSI chip testing example, 68

more-of-the-input vs. more-of-the-output, 42

tournament example, 42

recursive algorithms, link to, 137

multiplexer example, 92

narrowing the search space, 22, 24, 64, 89, 137,

297, 565

binary search example, 24

binary search trees, 64

exercise solutions, 565

magic sevens, 66

VLSI chip testing, 68

network flows/linear programming, 268

bipartite matching using network flow, 419

exercise solutions, 573

hill-climbing algorithm, small local maximum,

270

linear programming, 288

min cut specification, 269

primal-dual hill-climbing method, 276

specification, 268

steepest-ascent hill-climbing algorithm, 284

nondeterministic polynomial-time decision

problems (NP) completeness, 407

bipartite matching, network flow algorithm, 402,

419, 420

classifying problems, 403

exercise solutions, 582

lower bounds, 402

NP completeness proof steps, 407, 409

nondeterministic polynomial-time decision

problems (NP), 407

reduction P1poly P2, 402

reverse reductions, 403

satisfiability vs. optimization

Alg for optimization problem, 406

CIR-SAT, 404

optimization problems, 406

3 coloring example, 403

upper bounds, 402

why reduce, 402

operations on integers, 157

bN example, 157

Strassen’s matrix multiplication example, 161

xyz example, 159

optimization problems, 241

examples, 241

airplane, 242

course scheduling, 242

longest common sequence, 241

network flow, 268

problem specification, 241

parity example, 92, 93

parsing with stack, see also context-free parsing, 62

code, 62

ending, 62

example, 62

initial conditions, 62

loop invariant, 62

maintaining loop invariant, 62

parsing only, 63

parsing with context-free grammar, 63

specifications, 62

partial order linear ordering, 264

depth-first search algorithm, 265

easy but slow algorithm, 265

partial order definition, 265

shortest weight path, DAG, 267

topological sort problem specifications, 265

total order definition, 264

postconditions, 1

preconditions, 1

primal-dual hill-climbing method, 276

algorithm, 276

ending, 278

max-flow-min-cut duality principle, 282

running time, 283

www.cambridge.org/9781009302142
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Index 597

primality testing, randomized, 425

printing neatly example, 346

private invariants, 100

pseudocode

graph of life, 382

iterative algorithms, 18

public invariants, 100

quadratic function, 523

quantifiers, See existential/universal quantifiers

quick sort

example, 150

randomized, 425

radix sort, 78

basic steps, 78

ending, 79

establishing loop invariant, 79

loop invariant, 79

maintain loop invariant, 79

specification, 78

randomized algorithms, 423

deterministic worst case model, 424, 425

game show problem, 425

hiding worst cases from adversary, 423

Las Vegas model, 424

Monte Carlo model, 424

optimization problems with random structure,

427

expander graphs, 428

max cut problem, 428

quick sort, 425

randomized counting, 426

randomized primality testing, 425

VLSI chip testing, 72

randomly generating maze, 195

initial conditions, 195

postcondition, 195

precondition, 195

running time, 196

searching maze, 197

subinstances, 196

recurrence relations, 540

exercise solutions, 586

in recursive backtracking algorithms, 328

proofs, 543

recursive programs timing, 540

solving recursive relations, 541

recursion, 133, 208–210

binary trees, 209

Fast Fourier Transformations (FFT), 164

formal proof, 209

friends level of abstration, 135

on trees

exercise solutions, 570

generalizing problem solved, 179

heap sort/priority queues, 180

recursive definition of tree, 169

representing expressions with trees, 187

simple examples, 177

running time, 209

steps, 208

recursion on trees

data structure, 171

many children, 172

running time, 171

recursive algorithms, See also recursive

backtracking

checklist for, 139

code structure, 139

specifications, 140

tasks to complete, 142

variables, 140

correctness proof, with strong induction, 146

examples

Ackermann’s function, 162

exercise solutions, 567

operations on integers, 157

bN example, 157

Strassen’s matrix multiplication example, 161

xyz example, 159

exercise solutions, 567

base cases, 137

general input, 135

generalizing the problem, 136

link to techniques, iterative algorithms, 137

minimizing number of cases, 136

running time, 137

size, 135

specifications, 135

looking forward vs. backward, 134

solving, 162

sorting/selecting algorithms, 149

choosing the pivot, 152

finding the kth smallest example, 152

general recursive sorting algorithm, 149

merge sort example, 149

partitioning according to pivot element, 155

quick sort example, 150

stack frame, 144

strong induction, 146

tower of Hanoi, 138

recursive backtracking algorithms, 321, 576

as sequence of decisions, 321

best animal searching example, 323

maze searching example, 322

developing steps, 325

exercise solutions, 576

pruning branches, 329

greedy algorithms, 330

queens problem example, 325

satisfiability, 331

code, 333

Davis-Putnam, 332

www.cambridge.org/9781009302142
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

598 Index

instances/subinstances, 332

pruning, 332

running time, 334

satisfiability problem, 331

solutions iterating, 331

recursive backtracking, dynamic programming, 445

recursive depth-first search, 263

achieving postcondition, 264

code, 263

example, 264

running time, 264

recursive image specification, 192

recursive images, 192

exercise solutions, 571

fixed recursive/base case image, 192

base case, 192

birthday cake, 193

examples, 193

fractal, 194

image drawing, 192

man recursively framed, 193

recursing, 192

rotating square, 193

randomly generating maze, 195

reduction, 402

dynamic programming algorithms via, 375

best path similarity, 375

bigger-is-smarter elephant problem, 379

event scheduling problem, 375

graph instance formation, 376

mapping back algorithm, 377

lower bound, 402

optimization problems reduction, 406

reverse reduction, 403

upper bound, 402

use in classifying problems, 403

running time, See time/space complexity, 2

Ackermann’s function, 163

best binary search tree, 396

binary search, 24

binary search trees, 65

coloring the plane, 34

context-free grammar parsing, 204

counting sort, 77

dynamic programming, 346

GCD algorithm, 82

generic search algorithm, 247

heapify, 182

heapsort, 186

interval cover, 314

iterative algorithms, 10, 20

job/event scheduling, 310

linear programming, 292

magic sevens, 67

makeheap, 183

merge sort, 150

minimum spanning tree, 316

nodes in binary tree, 171

primal-dual hill-climbing method, 283

queens problem, 329

quick sort, 151

randomly generating maze, 196

recursive algorithms, 137

recursive backtracking, 340

satisfiability, 334

steepest-ascent hill-climbing algorithm, 285

towers of Hanoi, 139

union find set system, 54

VLSI chip testing, 72

sequence of actions vs. a sequence of assertions

check each computation path, 6

code vs. math assertions, 7

correctness, 9

differentiating between values, 7

game of life, 9

loops, 8

one step at a time, 7

proof by case, 8

proof by transitivity, 8

proof of correctness of each step, 8

proof of correctness of the algorithm, 6

shortest weight path, directed leveled graph

example, 337

solution is a tree, all pairs using matrix

multiplication, 397

sorting and selection algorithms, 149

bubble sort example, 26

finding the kth smallest example, 152

choosing the pivot, 152

iterative sorting algorithms

bucket sort by hand, 74

counting sort, 75

radix sort, 78

merge sort, 149

quick sort, 150

randomized quick sort, 425

recursive sorting algorithm, general, 149

stack frame, 144

memory, 145

stack of stack frames, 145

tree of stack frames, 133, 144, 171, 204

using, 146

steepest-ascent hill-climbing algorithm, 284

augmentation path, 284

running time, 285

Strassen’s matrix multiplication example, 161

system invariants, 99–101

goal, 99

private invariants, 100

public invariants, 100

relationship to loop invariants, 99

www.cambridge.org/9781009302142
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Index 599

time/space complexity, 83, 84, 403, 425, 513, 518,

548, 584

examples, 510

exercise solutions, 584

formal definition, 513

as functions, 508

operation definition, 510

purpose, 508

size definition, 509

time complexity of problem, 510

tournament example, 42

towers of Hanoi, 138

code, 139

divide and conquer, 138

running time, 139

specification, 138, 139

subinstance, 139

tree edges, 261

trees, See also binary search trees; recursion on

trees, 52, see also recursion on trees

AVL tree, 53

best AVL tree problem, 396

best binary search tree, 395

binary search tree, 53

chains of matrix multiplications, solution as tree

example, 390

dictionary ADT, data structure, 52–53

is a tree a binary search tree example, 174

nodes in binary tree example, 170

recursive definition of, 169

representing expressions with

differentiate expression example, 189

evaluate expression example, 188

recursive definition of expression, 188

simplify expression example, 189

tree data structure, 188

of stack frames, 133, 144, 171, 204, 294

traversals, 174

universal quantifiers, See existential/universal

quantifiers

upper bound, 88

cuts as upper bound, 279

for hill-climbing, 292

VLSI chip testing, 68

brute force algorithm, 69

data structure, 69

exiting loop, 72

extending the algorithm, 72

faster algorithm, 70

initial code, 72

loop invariant design, 70

maintaining loop invariant, 71

measure of progress, 72

randomized algorithm, 72

running time, 72

specification, 69

weighted job/event scheduling problem, 371

failed algorithms, 371

greedy dynamic programming, 372

weighted event scheduling problem, 371

work done-bubble sort example, 26

www.cambridge.org/9781009302142
www.cambridge.org

