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Second Edition

Understand algorithms and their design with this revised student-friendly textbook.

Unlike other algorithms books, this one is approachable, the methods it explains

are straightforward, and the insights it provides are numerous and valuable. Without

grinding through lots of formal proof, students will benefit from step-by-step methods

for developing algorithms, expert guidance on common pitfalls, and an appreciation of

the bigger picture. Revised and updated, this second edition includes a new chapter on

machine learning algorithms, and concise key concept summaries at the end of each

part for quick reference. Also new to this edition are more than 150 new exercises:

selected solutions are included to let students check their progress, while a full

solutions manual is available online for instructors. No other text explains complex

topics such as loop invariants as clearly, helping students to think abstractly and

preparing them for creating their own innovative ways to solve problems.

Jeff Edmonds is Professor in the Department of Electrical Engineering and Computer

Science at York University, Canada.
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“Jeff Edmonds’ How to Think about Algorithms offers a fresh perspective, placing methodical

but intuitive design principles (pre- and post-conditions, invariants, ‘transparent’ correctness)

as the bedrock on which to build and practice algorithmic thinking. The book reads like an epic

guided meditation on the vast universe of algorithms, directing the reader’s attention to the core

of each insight, while stimulating the mind through well-paced examples, playful but concise

analogies, and thought-provoking exercises.”

Nathan Chenette, Rose-Hulman Institute of Technology

“With a good book like this in your hands, learning about algorithms and getting programs to

work well will be fun and empowering. Anybody who wants to be a good programmer will get a

great deal from this surprisingly readable book. Its approach makes it perfect for reading on your

own if you want to enjoy learning about algorithms without being distracted by heavy maths. It

has lots of exercises that are worth doing. Most importantly, How to Think about Algorithms does

just that: it shows you how to think about algorithms and become a better programmer. Knowing

how to think about algorithms gives you the insights and skills to make computers do anything

more reliably and faster. The book is also ideal for any taught university course, because it is

self-contained and systematically sets out the essential material, but most importantly because

it empowers students to think for themselves.”

Harold Thimbleby, Swansea University
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Dedicated to my siblings, Jennifer, Martin, Alex, and Laura, and to my

children, Josh and Micah.

May the love and the mathematics continue to flow between the

generations.
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Preface

This book is designed to be used in a twelve-week, third-year algorithms course.

The goal is to teach students to think abstractly about algorithms and about the key

algorithmic techniques used to develop them.

Meta-Algorithms: Students must learn so many algorithms that they are sometimes

overwhelmed. In order to facilitate their understanding, most textbooks cover the

standard themes of iterative algorithms, recursion, greedy algorithms, and dynamic

programming. Generally, however, when it comes to presenting the algorithms them-

selves and their proofs of correctness, the concepts are hidden within optimized code

and slick proofs. One goal of this book is to present a uniform and clean way of thinking

about algorithms. We do this by focusing on the structure and proof of correctness

of iterative and recursive meta-algorithms, and within these the greedy and dynamic

programming meta-algorithms. By learning these and their proofs of correctness, most

actual algorithms can be easily understood. The challenge is that thinking about meta-

algorithms requires a great deal of abstract thinking.

Abstract Thinking: Students are very good at learning how to apply a concrete

code to a concrete input instance. They tend, however, to find it difficult to think

abstractly about the algorithms. I maintain that the more abstractions a person has

from which to view the problem, the deeper their understanding of it will be, the

more tools they will have at their disposal, and the better prepared they will be to

design their own innovative ways to solve new problems. Hence, I present a number

of different notations, analogies, and paradigms within which to develop and to think

about algorithms.

Levels: The psychological profiling of a successful person is mostly the ability to shift

levels of abstraction.

To understand the detailed workings.

To understand the big picture.

To understand complex things in simple ways.

Way of Thinking: People who develop algorithms have various ways of thinking and

intuition that tend not to get taught. The assumption, I suppose, is that these cannot

www.cambridge.org/9781009302142
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xiv Preface

be taught but must be figured out on one’s own. This text attempts to teach students to

think like a designer of algorithms.

Not a Reference Book: My intention is not to teach a specific selection of algorithms

for specific purposes. Hence, the book is not organized according to the application of

the algorithms, but according to the techniques and abstractions used to develop them.

Developing Algorithms: The goal is not to present completed algorithms in a nice

clean package, but to go slowly through every step of the development. Many false

starts have been added. The hope is that this will help students learn to develop

algorithms on their own. The difference is a bit like the difference between studying

carpentry by looking at houses and by looking at hammers.

Proof of Correctness: Our philosophy is not to follow an algorithm with a formal

proof that it is correct. Instead, this text is about learning how to think about, develop,

and describe algorithms in such way that their correctness is transparent.

Big Picture vs. Small Steps: For each topic, I attempt both to give the big picture and

to break it down into easily understood steps.

Level of Presentation: This material is difficult. There is no getting around that. I have

tried to figure out where confusion may arise and to cover these points in more detail. I

try to balance the succinct clarity that comes with mathematical formalism against the

personified analogies and metaphors that help to provide both intuition and humor.

Point Form: The text is organized into blocks, each containing a title and a single

thought. Hopefully, this will make the text easier to lecture and study from.

Prerequisites: The text assumes that the students have completed a first-year program-

ming course and have a general mathematical maturity. The Part IV, Additional Topics,

covers much of the mathematics that will be needed.

Homework Questions: A few additional questions are included. I am hoping to

develop many more, along with their solutions. Contributions are welcome.

Read Ahead: The student is expected to read the material before attending lectures or

classes. This will facilitate productive discussion during class.

Explaining: To be able to prove yourself on a test or on the job, you need to be able

to explain the material well. In addition, explaining it to someone else is the best way

to learn it yourself. Hence, I highly recommend spending a lot of time explaining the

material over and over again out loud to yourself, to each other, and to your stuffed bear.

Dreaming: I would like to emphasis the importance of thinking, even daydreaming,

about the material. This can be done while going through your day – while swimming,

showering, cooking, or lying in bed. Ask questions. Why is it done this way and not that

way? Invent other algorithms for solving a problem. Then look for input instances for

which your algorithm gives the wrong answer. Mathematics is not all linear thinking.

If the essence of the material, what the questions are really asking, is allowed to seep

down into your subconscious then with time little thoughts will begin to percolate up.

Pursue these ideas. Sometimes even flashes of inspiration appear.
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