How to Think about Algorithms

Second Edition

Understand algorithms and their design with this revised student-friendly textbook. Unlike other algorithms books, this one is approachable, the methods it explains are straightforward, and the insights it provides are numerous and valuable. Without grinding through lots of formal proof, students will benefit from step-by-step methods for developing algorithms, expert guidance on common pitfalls, and an appreciation of the bigger picture. Revised and updated, this second edition includes a new chapter on machine learning algorithms, and concise key concept summaries at the end of each part for quick reference. Also new to this edition are more than 150 new exercises: selected solutions are included to let students check their progress, while a full solutions manual is available online for instructors. No other text explains complex topics such as loop invariants as clearly, helping students to think abstractly and preparing them for creating their own innovative ways to solve problems.

Jeff Edmonds is Professor in the Department of Electrical Engineering and Computer Science at York University, Canada.

"Jeff Edmonds' *How to Think about Algorithms* offers a fresh perspective, placing methodical but intuitive design principles (pre- and post-conditions, invariants, 'transparent' correctness) as the bedrock on which to build and practice algorithmic thinking. The book reads like an epic guided meditation on the vast universe of algorithms, directing the reader's attention to the core of each insight, while stimulating the mind through well-paced examples, playful but concise analogies, and thought-provoking exercises."

Nathan Chenette, Rose-Hulman Institute of Technology

"With a good book like this in your hands, learning about algorithms and getting programs to work well will be fun and empowering. Anybody who wants to be a good programmer will get a great deal from this surprisingly readable book. Its approach makes it perfect for reading on your own if you want to enjoy learning about algorithms without being distracted by heavy maths. It has lots of exercises that are worth doing. Most importantly, *How to Think about Algorithms* does just that: it shows you how to think about algorithms and become a better programmer. Knowing how to think about algorithms gives you the insights and skills to make computers do anything more reliably and faster. The book is also ideal for any taught university course, because it is self-contained and systematically sets out the essential material, but most importantly because it empowers students to think for themselves."

Harold Thimbleby, Swansea University

Cambridge University Press & Assessment 978-1-009-30214-2 — How to Think about Algorithms Jeff Edmonds Frontmatter <u>More Information</u>

How to Think about Algorithms

Second Edition

JEFF EDMONDS York University, Toronto

Cambridge University Press & Assessment 978-1-009-30214-2 — How to Think about Algorithms Jeff Edmonds Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/highereducation/isbn/9781009302142

DOI: 10.1017/9781009302180

© Jeff Edmonds 2008, 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First edition published 2008 Second edition published 2024

Printed in the United Kingdom by TJ Books Limited, Padstow, Cornwall, 2024

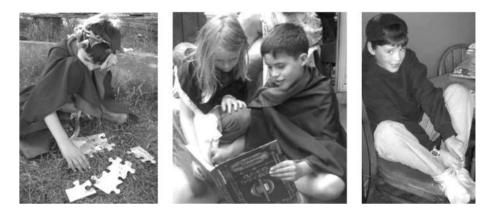
A catalogue record for this publication is available from the British Library

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-009-30214-2 Hardback ISBN 978-1-009-30213-5 Paperback

Additional resources for this publication at www.cambridge.org/Edmonds2e

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.


Cambridge University Press & Assessment 978-1-009-30214-2 — How to Think about Algorithms Jeff Edmonds Frontmatter <u>More Information</u>

Dedicated to my siblings, Jennifer, Martin, Alex, and Laura, and to my children, Josh and Micah.

May the love and the mathematics continue to flow between the generations.

Cambridge University Press & Assessment 978-1-009-30214-2 — How to Think about Algorithms Jeff Edmonds Frontmatter <u>More Information</u>

Problem Solving Out of the Box Leaping Deep Thinking Creative Abstracting Logical Deducing with Friends Working Fun Having Fumbling and Bumbling Bravely Persevering Joyfully Succeeding

Contents

	Prefa	ace po	ige xiii			
	Intro	duction	1			
Pa	rt I It	erative Algorithms and Loop Invariants				
1	Iterative Algorithms: Measures of Progress and Loop Invariants					
	1.1	A Paradigm Shift: A Sequence of Actions vs. a Sequence of Assertions	5			
	1.2	The Steps to Develop an Iterative Algorithm	9			
	1.3	More about the Steps	13			
	1.4	Different Types of Iterative Algorithms	21			
	1.5	Code from Loop Invariants	28			
	1.6	Typical Errors	31			
	1.7	Exercises	32			
2	Examples Using More-of-the-Input Loop Invariants					
2	2.1	Coloring the Plane	33			
	2.2	Deterministic Finite Automaton	35			
	2.3	More of the Input vs. More of the Output	42			
3	Abstract Data Types					
	3.1	Specifications and Hints at Implementations	47			
	3.2	Link List Implementation	55			
	3.3	Merging with a Queue	61			
	3.4	Parsing with a Stack	62			
4	Narrowing the Search Space: Binary Search					
	4.1	Binary Search Trees	64			
	4.2	Magic Sevens	66			
	4.3	VLSI Chip Testing	68			
	4.4	Exercises	72			
5	Itera	tive Sorting Algorithms	74			
-	5.1	Bucket Sort by Hand	74			

	00111	ents		
	5.2	Counting Sort (a Stable Sort)		
	5.3	Radix Sort		
6	More	Iterative Algorithms		
	6.1	Euclid's GCD Algorithm		
	6.2	Multiplying		
7	The I	Loop Invariant for Lower Bounds		
8	Key Concepts Summary: Loop Invariants and Iterative Algorithms			
	8.1	Loop Invariants and Iterative Algorithms		
	8.2	System Invariants		
9	Addi	tional Exercises: Part I		
10	Parti	al Solutions to Additional Exercises: Part I		
Pa	rt II R	lecursion		
11	Abst	ractions, Techniques, and Theory		
	11.1	Thinking about Recursion		
	11.2	Looking Forward vs. Backward		
	11.2 11.3	-		
		With a Little Help from Your Friends		
	11.3	With a Little Help from Your Friends The Towers of Hanoi		
	11.3 11.4	With a Little Help from Your Friends The Towers of Hanoi		
	11.3 11.4 11.5	With a Little Help from Your Friends The Towers of Hanoi Checklist for Recursive Algorithms		
12	11.3 11.4 11.5 11.6 11.7	With a Little Help from Your Friends The Towers of Hanoi Checklist for Recursive Algorithms The Stack Frame		
12	11.3 11.4 11.5 11.6 11.7	With a Little Help from Your Friends The Towers of Hanoi Checklist for Recursive Algorithms The Stack Frame Proving Correctness with Strong Induction		
12	11.3 11.4 11.5 11.6 11.7	With a Little Help from Your Friends The Towers of Hanoi Checklist for Recursive Algorithms The Stack Frame Proving Correctness with Strong Induction e Simple Examples of Recursive Algorithms Sorting and Selecting Algorithms Operations on Integers		
12	11.3 11.4 11.5 11.6 11.7 Som 12.1	With a Little Help from Your Friends The Towers of Hanoi Checklist for Recursive Algorithms The Stack Frame Proving Correctness with Strong Induction E Simple Examples of Recursive Algorithms Sorting and Selecting Algorithms		
12	11.3 11.4 11.5 11.6 11.7 Som 12.1 12.2	With a Little Help from Your Friends The Towers of Hanoi Checklist for Recursive Algorithms The Stack Frame Proving Correctness with Strong Induction e Simple Examples of Recursive Algorithms Sorting and Selecting Algorithms Operations on Integers		
12	11.3 11.4 11.5 11.6 11.7 Som 12.1 12.2 12.3	With a Little Help from Your Friends The Towers of Hanoi Checklist for Recursive Algorithms The Stack Frame Proving Correctness with Strong Induction E Simple Examples of Recursive Algorithms Sorting and Selecting Algorithms Operations on Integers Ackermann's Function		
	11.3 11.4 11.5 11.6 11.7 Som 12.1 12.2 12.3 12.4 12.5 Recu	With a Little Help from Your Friends The Towers of Hanoi Checklist for Recursive Algorithms The Stack Frame Proving Correctness with Strong Induction E Simple Examples of Recursive Algorithms Sorting and Selecting Algorithms Operations on Integers Ackermann's Function Fast Fourier Transformations Exercise		
	 11.3 11.4 11.5 11.6 11.7 Some 12.1 12.2 12.3 12.4 12.5 	With a Little Help from Your Friends The Towers of Hanoi Checklist for Recursive Algorithms The Stack Frame Proving Correctness with Strong Induction E Simple Examples of Recursive Algorithms Sorting and Selecting Algorithms Operations on Integers Ackermann's Function Fast Fourier Transformations Exercise trsion on Trees Tree Traversals		
	11.3 11.4 11.5 11.6 11.7 Som 12.1 12.2 12.3 12.4 12.5 Recu	With a Little Help from Your Friends The Towers of Hanoi Checklist for Recursive Algorithms The Stack Frame Proving Correctness with Strong Induction E Simple Examples of Recursive Algorithms Sorting and Selecting Algorithms Operations on Integers Ackermann's Function Fast Fourier Transformations Exercise		
	 11.3 11.4 11.5 11.6 11.7 Some 12.1 12.2 12.3 12.4 12.5 Recu 13.1 	With a Little Help from Your Friends The Towers of Hanoi Checklist for Recursive Algorithms The Stack Frame Proving Correctness with Strong Induction E Simple Examples of Recursive Algorithms Sorting and Selecting Algorithms Operations on Integers Ackermann's Function Fast Fourier Transformations Exercise trsion on Trees Tree Traversals		
	11.3 11.4 11.5 11.6 11.7 Som 12.1 12.2 12.3 12.4 12.5 Recu 13.1 13.2	With a Little Help from Your Friends The Towers of Hanoi Checklist for Recursive Algorithms The Stack Frame Proving Correctness with Strong Induction E Simple Examples of Recursive Algorithms Sorting and Selecting Algorithms Operations on Integers Ackermann's Function Fast Fourier Transformations Exercise tree Traversals Simple Examples		
13	 11.3 11.4 11.5 11.6 11.7 Some 12.1 12.2 12.3 12.4 12.5 Recu 13.1 13.2 13.3 13.4 Recu 	With a Little Help from Your Friends The Towers of Hanoi Checklist for Recursive Algorithms The Stack Frame Proving Correctness with Strong Induction E Simple Examples of Recursive Algorithms Sorting and Selecting Algorithms Operations on Integers Ackermann's Function Fast Fourier Transformations Exercise Irsion on Trees Tree Traversals Simple Examples Heap Sort and Priority Queues Representing Expressions with Trees		
13	 11.3 11.4 11.5 11.6 11.7 Some 12.1 12.2 12.3 12.4 12.5 Recu 13.1 13.2 13.3 13.4 	With a Little Help from Your Friends The Towers of Hanoi Checklist for Recursive Algorithms The Stack Frame Proving Correctness with Strong Induction E Simple Examples of Recursive Algorithms Sorting and Selecting Algorithms Operations on Integers Ackermann's Function Fast Fourier Transformations Exercise trsion on Trees Tree Traversals Simple Examples Heap Sort and Priority Queues Representing Expressions with Trees		
13	 11.3 11.4 11.5 11.6 11.7 Some 12.1 12.2 12.3 12.4 12.5 Recu 13.1 13.2 13.3 13.4 Recu 	With a Little Help from Your Friends The Towers of Hanoi Checklist for Recursive Algorithms The Stack Frame Proving Correctness with Strong Induction E Simple Examples of Recursive Algorithms Sorting and Selecting Algorithms Operations on Integers Ackermann's Function Fast Fourier Transformations Exercise Irsion on Trees Tree Traversals Simple Examples Heap Sort and Priority Queues Representing Expressions with Trees		

	Conte	nts i>
45	Develop with Content Free Commons	100
15	Parsing with Context-Free Grammars	198
16	Key Concepts Summary: Recursion	208
17	Additional Exercises: Part II	211
18	Partial Solutions to Additional Exercises: Part II	230
Pa	rt III Optimization Problems	
19	Definition of Optimization Problems	241
20	Graph Search Algorithms	243
	20.1 A Generic Search Algorithm	243
	20.2 Breadth-First Search for Shortest Paths	248
	20.3 Dijkstra's Shortest-Weighted-Path Algorithm	253
	20.4 Depth-First Search	259
	20.5 Recursive Depth-First Search	263
	20.6 Linear Ordering of a Partial Order	264
	20.7 Exercise	267
21	Network Flows and Linear Programming	268
	21.1 A Hill-Climbing Algorithm with a Small Local Maximum	270
	21.2 The Primal–Dual Hill-Climbing Method	276
	21.3 The Steepest-Ascent Hill-Climbing Algorithm	284
	21.4 Linear Programming	288
	21.5 Exercises	293
22	Greedy Algorithms	294
	22.1 Abstractions, Techniques, and Theory	294
	22.2 Examples of Greedy Algorithms	307
	22.3 Exercises	320
23	Recursive Backtracking	321
	23.1 Recursive Backtracking Algorithms	321
	23.2 The Steps in Developing a Recursive Backtracking	325
	23.3 Pruning Branches	329
	23.4 Satisfiability	331
	23.5 Exercises	334
	Dynamic Programming Algorithms	336
24		
24	24.1 Start by Developing a Recursive Backtracking Algorithm	336
24	24.1 Start by Developing a Recursive Backtracking Algorithm24.2 The Steps in Developing a Dynamic Programming Algorithm24.3 Subtle Points	336 340

х		Conte	ents	
		24.4 24.5	The Longest-Common-Subsequence Problem	364
			Dynamic Programs as More-of-the-Input Iterative Loop Invariant Algorithms	368
		24.6	A Greedy Dynamic Program: The Weighted Job/Event Scheduling Problem	371
	25	Desi	gning Dynamic Programming Algorithms via Reductions	375
	26	The C	Game of Life	380
		26.1	Graph <i>G</i> from Computation	380
		26.2	The Graph of Life	382
		26.3	Examples of the Graph of Life	385
	27	Solut	tion Is a Tree	390
		27.1	The Solution Viewed as a Tree: Chains of Matrix Multiplications	390
		27.2	Generalizing the Problem Solved: Best AVL Tree	395
		27.3	All Pairs Using Matrix Multiplication	397
		27.4	Parsing with Context-Free Grammars	398
	28	Redu	ctions and NP-Completeness	402
		28.1	Satisfiability Is at Least as Hard as Any Optimization Problem	404
		28.2	Steps to Prove NP-Completeness	407
		28.3	Example: 3-Coloring Is NP-Complete	415
		28.4	An Algorithm for Bipartite Matching Using the Network Flow	
			Algorithm	419
	29	Rand	lomized Algorithms	423
		29.1	Using Randomness to Hide the Worst Cases	423
		29.2	Solutions of Optimization Problems with a Random Structure	427
	30	Mach	ine Learning	431
	31	Key (Concepts Summary: Greedy Algorithms and Dynamic Programming	439
		31.1	Greedy Algorithms	439
		31.2	Dynamic Programming	444
	32	Addi	tional Exercises: Part III	454
		32.1	Graph Algorithms	454
		32.2	Greedy Algorithms	457
		32.3	Dynamic Programming	465
		32.4	Reductions and NP-Completeness	476
	33	Partia	al Solutions to Additional Exercises: Part III	482
		33.1	Graph Algorithms	482

		Content	s xi
	33.2 Greedy Algorith	hms	482
	33.3 Dynamic Progra	amming	485
	33.4 Reductions and	NP-Completeness	492
Pa	IV Additional Topi	cs	
34	Existential and Unive	rsal Quantifiers	499
35	Time Complexity		508
	35.1 The Time (and	Space) Complexity of an Algorithm	508
	35.2 The Time Comp	plexity of a Computational Problem	513
36	Logarithms and Expo	onentials	515
37	Asymptotic Growth		518
	37.1 Steps to Classif	y a Function	519
	37.2 More about Asy	ymptotic Notation	525
38	Adding-Made-Easy A	pproximations	529
	38.1 The Technique		530
	38.2 Some Proofs for	r the Adding-Made-Easy Technique	534
39	Recurrence Relations	5	540
	39.1The Technique		540
	39.2 Some Proofs		543
40	A Formal Proof of Co	rrectness	549
41	Additional Exercises:	: Part IV	551
	41.1 Existential and	Universal Quantifiers	551
	41.2 Time Complexi	•	553
	41.3 Asymptotic Gro		554
	41.4 Adding Made-E	Easy Approximations	554
42	Partial Solutions to Additional Exercises: Part IV		
		Universal Quantifiers	556
	42.2 Time Complexi	ity	560
	Exercise Solutions		561
	Conclusion		588
	Index		589

Preface

This book is designed to be used in a twelve-week, third-year algorithms course. The goal is to teach students to think abstractly about algorithms and about the key algorithmic techniques used to develop them.

Meta-Algorithms: Students must learn so many algorithms that they are sometimes overwhelmed. In order to facilitate their understanding, most textbooks cover the standard themes of iterative algorithms, recursion, greedy algorithms, and dynamic programming. Generally, however, when it comes to presenting the algorithms themselves and their proofs of correctness, the concepts are hidden within optimized code and slick proofs. One goal of this book is to present a uniform and clean way of thinking about algorithms. We do this by focusing on the structure and proof of correctness of *iterative* and *recursive* meta-algorithms, and within these the *greedy* and *dynamic programming* meta-algorithms. By learning these and their proofs of correctness, most actual algorithms can be easily understood. The challenge is that thinking about meta-algorithms requires a great deal of abstract thinking.

Abstract Thinking: Students are very good at learning how to apply a concrete code to a concrete input instance. They tend, however, to find it difficult to think abstractly about the algorithms. I maintain that the more abstractions a person has from which to view the problem, the deeper their understanding of it will be, the more tools they will have at their disposal, and the better prepared they will be to design their own innovative ways to solve new problems. Hence, I present a number of different notations, analogies, and paradigms within which to develop and to think about algorithms.

Levels: The psychological profiling of a successful person is mostly the ability to shift levels of abstraction.

To understand the detailed workings.

To understand the big picture.

To understand complex things in simple ways.

Way of Thinking: People who develop algorithms have various ways of thinking and intuition that tend not to get taught. The assumption, I suppose, is that these cannot

xiv Preface

be taught but must be figured out on one's own. This text attempts to teach students to think like a designer of algorithms.

Not a Reference Book: My intention is not to teach a specific selection of algorithms for specific purposes. Hence, the book is not organized according to the application of the algorithms, but according to the techniques and abstractions used to develop them.

Developing Algorithms: The goal is not to present completed algorithms in a nice clean package, but to go slowly through every step of the development. Many false starts have been added. The hope is that this will help students learn to develop algorithms on their own. The difference is a bit like the difference between studying carpentry by looking at houses and by looking at hammers.

Proof of Correctness: Our philosophy is not to follow an algorithm with a formal proof that it is correct. Instead, this text is about learning how to think about, develop, and describe algorithms in such way that their correctness is transparent.

Big Picture vs. Small Steps: For each topic, I attempt both to give the big picture and to break it down into easily understood steps.

Level of Presentation: This material is difficult. There is no getting around that. I have tried to figure out where confusion may arise and to cover these points in more detail. I try to balance the succinct clarity that comes with mathematical formalism against the personified analogies and metaphors that help to provide both intuition and humor.

Point Form: The text is organized into blocks, each containing a title and a single thought. Hopefully, this will make the text easier to lecture and study from.

Prerequisites: The text assumes that the students have completed a first-year programming course and have a general mathematical maturity. The Part IV, Additional Topics, covers much of the mathematics that will be needed.

Homework Questions: A few additional questions are included. I am hoping to develop many more, along with their solutions. Contributions are welcome.

Read Ahead: The student is expected to read the material *before* attending lectures or classes. This will facilitate productive discussion during class.

Explaining: To be able to prove yourself on a test or on the job, you need to be able to explain the material well. In addition, explaining it to someone else is the best way to learn it yourself. Hence, I highly recommend spending a lot of time explaining the material over and over again out loud to yourself, to each other, and to your stuffed bear.

Dreaming: I would like to emphasis the importance of thinking, even daydreaming, about the material. This can be done while going through your day – while swimming, showering, cooking, or lying in bed. Ask questions. Why is it done this way and not that way? Invent other algorithms for solving a problem. Then look for input instances for which your algorithm gives the wrong answer. Mathematics is not all linear thinking. If the essence of the material, what the questions are really asking, is allowed to seep down into your subconscious then with time little thoughts will begin to percolate up. Pursue these ideas. Sometimes even flashes of inspiration appear.

Preface

xv

Acknowledgments

I would like to thank Andy Mirzaian, Franck van Breugel, James Elder, Suprakash Datta, Eric Ruppert, Russell Impagliazzo, Toniann Pitassi, and Kirk Pruhs, with whom I co-taught and co-researched algorithms for many years. I would like to thank Jennifer Wolfe, Lauren Cowles, Julie Lancashire, Anna Scriven, Rachel Norridge, and Beth Morel for their fantastic editing jobs. All of these people were a tremendous support for this work.