
Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Introduction

From determining the cheapest way to make a hot dog to monitoring the workings

of a factory, there are many complex computational problems to be solved. Before

executable code can be produced, computer scientists need to be able to design the

algorithms that lie behind the code, be able to understand and describe such algorithms

abstractly, and be conûdent that they work correctly and eûciently. These are the goals

of computer scientists.

A Computational Problem: A speciûcation of a computational problem uses precon-

ditions and postconditions to describe for each legal input instance that the computation

might receive, what the required output or actions are. This may be a function mapping

each input instance to the required output. It may be an optimization problem that

requires a solution to be outputted that is <optimal= from among a huge set of possible

solutions for the given input instance. It may also be an ongoing system or data structure

that responds appropriately to a constant stream of input.

Example: The sorting problem is deûned as follows:

Preconditions: The input is a list of n values, including possible repeti-

tions.

Postconditions: The output is a list consisting of the same n values in

nondecreasing order.

An Algorithm: An algorithm is a step-by-step procedure that, starting with an input

instance, produces a suitable output. It is described at the level of detail and abstraction

best suited to the human audience who must understand it. In contrast, code is an

implementation of an algorithm that can be executed by a computer. Pseudocode lies

between these two.

An Abstract Data Type: Computers use zeros and ones, ands and ors, ifs and

gotos. This does not mean that we have to. The description of an algorithm may

talk of abstract objects such as integers, reals, strings, sets, stacks, graphs, and trees;

abstract operations such as <sort the list,= <pop the stack,= or <trace a path=; and

abstract relationships such as greater than, preûx, subset, connected, and child. To

be useful, the nature of these objects and the eûect of these operations need to be

understood. However, in order to hide details that are tedious or irrelevant, the precise

implementations of these data structure and algorithms do not need to be speciûed. For

more on this see Chapter 3.

www.cambridge.org/9781009302142
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Introduction

Correctness: An algorithm for the problem is correct if for every legal input instance,

the required output is produced. Though a certain amount of logical thinking is

requireds, the goal of this text is to teach how to think about, develop, and describe

algorithms in such way that their correctness is transparent. See Chapter 40 for the

formal steps required to prove correctness, and Chapter 34 for a discussion of forall

and exist statements that are essential for making formal statements.

Running Time: It is not enough for a computation to eventually get the correct answer.

It must also do so using a reasonable amount of time and memory space. The running

time of an algorithm is a function from the size n of the input instance given to a bound

on the number of operations the computation must do. (See Chapter 35.) The algorithm

is said to be feasible if this function is a polynomial like Time(n) =�(n2), and is said

to be infeasible if this function is an exponential like Time(n) =�(2n). (See Chapters

36 and 37 for more on the asymptotics of functions.) To be able to compute the running

time, one needs to be able to add up the times taken in each iteration of a loop and to

solve the recurrence relation deûning the time of a recursive program. (See Chapter

38 for an understanding of
�n

i=1 i =�(n2), and Chapter 39 for an understanding of

T (n) = 2T (n
2
) + n =�(n log n).)

Meta-algorithms: Most algorithms are best described as being either iterative or

recursive. An iterative algorithm (Part I) takes one step at a time, ensuring that each

step makes progress while maintaining the loop invariant. A recursive algorithm (Part

II) breaks its instance into smaller instances, which it gets a friend to solve, and then

combines their solutions into one of its own.

Optimization problems (Part III) form an important class of computational prob-

lems. The key algorithms for them are the following. Greedy algorithms (Chapter

22) keep grabbing the next object that looks best. Recursive backtracking algorithms

(Chapter 23) try things and, if they don9t work, backtrack and try something else.

Dynamic programming (Chapter 24) solves a sequence of larger and larger instances,

reusing the previously saved solutions for the smaller instances, until a solution is

obtained for the given instance. Reductions (Chapter 28) use an algorithm for one

problem to solve another. Randomized algorithms (Chapter 29) üip coins to help them

decide what actions to take. Finally, lower bounds (Chapter 7) prove that there are no

faster algorithms.

www.cambridge.org/9781009302142
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Part I

Iterative Algorithms and Loop
Invariants

www.cambridge.org/9781009302142
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1 Iterative Algorithms: Measures of

Progress and Loop Invariants

Using an iterative algorithm to solve a computational problem is a bit like following

a road, possibly long and diûcult, from your start location to your destination. With

each iteration, you have a method that takes you a single step closer. To ensure that you

move forward, you need to have a measure of progress telling you how far you are either

from your starting location or to your destination. You cannot expect to know exactly

where the algorithm will go and you need to expect some weaving and winding. On

the other hand, you do not want to have to know how to handle every ditch and dead

end in the world. A compromise between these two is to have a loop invariant, which

deûnes a road (or region) that you may not leave. As you travel, worry about one step

at a time. You must know how to get onto the road from any start location. From every

place along the road, you must know what actions you will take in order to step forward

while not leaving the road. Finally, when suûcient progress has been made along the

road, you must know how to exit and reach your destination. Hopefully, this happens

in a reasonable amount of time.

1.1 A Paradigm Shift: A Sequence of Actions vs. a Sequence of
Assertions

Understanding iterative algorithms requires understanding the diûerence between a

loop invariant, which is an assertion or picture of the computation at a particular point

in time, and the actions that are required to maintain such a loop invariant.

One of the ûrst important paradigm shifts that programmers struggle to make is

from viewing an algorithm as a sequence of actions to viewing it as a sequence of

snapshots of the state of the computer. Programmers tend to ûxate on the ûrst view,

because code is a sequence of instructions for action and a computation is a sequence

of actions. Though this is an important view, there is another. Imagine stopping time at

key points during the computation and taking still pictures of the state of the computer.

Then a computation can equally be viewed as a sequence of such snapshots. Having two

ways of viewing the same thing gives one both more tools to handle it and a deeper

understanding of it. An example of viewing a computation as an alteration between

assertions about the current state of the computation and blocks of actions that bring

the state of the computation to the next state is shown here.

www.cambridge.org/9781009302142
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 1 Iterative Algorithms: Measures of Progress and Loop Invariants

Max(a, b, c)

PreCond: Input has 3 numbers.

m = a

assert: m is max in {a}.

if(b > m)

m = b

end if

assert: m is max in {a,b}.

if(c > m)

m = c

end if

assert: m is max in {a,b,c}.

return(m)

PostCond: return max in {a,b,c}.

end algorithm

The Challenge of the Sequence-of-Actions View Suppose one is designing a new

algorithm or explaining an algorithm to a friend. If one is thinking of it as sequence of

actions, then one will likely start at the beginning: Do this. Do that. Do this. Shortly

one can get lost and not know where one is. To follow this, one needs to keep track of

how the state of the computer changes with each new action. In order to know what

action to take next, one needs to have a global plan of where the computation is to go.

To make it worse, the computation has many ifs and loops so one has to consider all

the various paths that the computation may take.

The Advantages of the Sequence of Snapshots View: This new paradigm is a useful

one from which one can think about, explain, or develop an algorithm.

Pre- and Postconditions: Before one can consider an algorithm, one needs to carefully

deûne the computational problem being solved by it. This is done with pre- and

postconditions by providing the initial picture, or assertion, about the input instance

and a corresponding picture or assertion about required output.

Proof of Correctness of the Algorithm: It is important that you know that your code

works. The proof might be a formal mathematical one or it might be informal hand

waving. Either way, the formal statement of what needs to be proved is as follows.

PreCond & code ó PostCond

This states that if the input instance happens to meet the precondition and the code is

executed, then in the end the output will meet the postcondition. On the other hand, if

the precondition was not met, then except for being polite, there are no requirements

on what your code does.

Check Each Computation Path: The computation from pre- to postcondition will

follow one of possibly many paths. For each such path, you need to be conûdent that

the postcondition will be met in the end. Suppose the above Max(a,b,c) code had not

www.cambridge.org/9781009302142
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1 A Paradigm Shift: A Sequence of Actions vs. a Sequence of Assertions 7

two if then else statements but a sequence of r of them. There would then be 2r paths

though which the computation might follow. Checking each of these would be too much

work. Instead, we will break the computation into subcomputations.

One Step at a Time: A main theme of this book is to implore you not to think about

the entire computation all at once. As recommended in Alcoholics Anonymous, worry

about one step at a time.

Start in the Middle: Instead of starting with the ûrst line code, an alternative way

to design an algorithm is to jump into the middle of the computation and to draw a

static picture, or assertion, about the state we would like the computation to be in at

this time. This picture does not need to state the exact value of each variable. Instead,

it gives general properties and relationships between the various data structures that

are key to understanding the algorithm. If this assertion is suûciently general, it will

capture not just this one point during the computation, but many similar points. Then

it might become a part of a loop.

Sequence of Snapshots: Once one builds up a sequence of assertions in this way, one

can see the entire path of the computation laid out before one.

Fill in the Actions: These assertions are just static snapshots of the computation with

time stopped. No actions have been considered yet. The ûnal step is to ûll in actions

(code) between consecutive assertions.

One Step at a Time: Each such block of actions can be executed completely indepen-

dently of the others. It is much easier to consider them one at a time than to worry about

the entire computation at once. In fact, one can complete these blocks in any order one

wants and modify one block without worrying about the eûect on the others.

Fly In from Mars: This is how you should ûll in the code between the ith and the

i + 1st assertions. Suppose you have just üown in from Mars, and absolutely the only

thing you know about the current state of your computation is that the ith assertion

holds. The computation might actually be in a state that is completely impossible to

arrive at, given the algorithm that has been designed so far. It is allowing this that

provides independence between these blocks of actions.

Take One Step: Being in a state in which the ith assertion holds, your task is simply

to write some simple code to do a few simple actions, that change the state of the

computation so that the i + 1st assertion holds.

Differentiating between Values: Deûne xi to be the value of x when the computation

is at the ith assertion and xi+1 to be that after the computation has gone around the

loop and is at the i + 1st. You may prefer the notation xû and xû.

Code vs. Math Assertions: Denote as codei the assertion of the result of the code

between these assertions. Code x = x + 1, though a ûne action, is incorrect as a

statement. If you want to prove things you need to translate this into the mathematical

www.cambridge.org/9781009302142
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 1 Iterative Algorithms: Measures of Progress and Loop Invariants

assertion codei : xi+1 = xi + 1. Similarly translate the actions x = x + 1; y = y + x; x =

x × y into the assertion xt+1 = (xt + 1)(yt + xt + 1); yt+1 = yt + xt + 1.

Proof of Correctness of Each Step: The proof that your algorithm works can be done

one block at a time. The formal statement of what needs to be proved is as follows:
�

ith 2 assertion
"

& codei ó
"

i + 1st 2 assertion
"

.

For example, a statement
"

ith 2 assertion
"

: xi is odd assures us that the state of the

computation is such that ith assertion holds for the values xi. The statement codei :

xi+1 = xi + 1 assures us that if you restart the code just long enough to execute the next

block of code, the stated relationship holds between the xi values and the xi+1 values.

Our goal is to combine these two facts to prove that the statement
"

i + 1st 2 assertion
"

:

xi+1 is even holds for the xi+1 values.

Proof by Case: If you can prove: 1) There are only two cases, 2) If the ûrst case is true,

then our assertion is true, 3) If the second case is true, then our assertion is true, then

we can conclude that our assertion is true.

In the above code, let9s assume that computation has paused at the line assert: mi

is max in {a,b} and that this assertion is true. From here, there are two paths that the

computation might follow. If the ûrst path is followed, we are assured that c > mi and

that mi+1 = c. From these three facts, we can conclude assert: mi+1 is max in {a,b,c}.

On the other hand, if the second path is followed, we are assured that c f mi and that

mi+1 = mi. From these three facts, we can also conclude assert: mi+1 is max in {a,b,c}.

Proof by Transitivity: If we prove PreCond ó assert1, assert1 ó assert2,

assert2 ó assert3, and assert3 ó PostCond, then by transitively we can conclude that

PreCond ó PostCond.

Loops: Once you see the pattern in the above Max(a,b,c) code, we can generalize each

of its steps into a generic step and put that into a loop giving the following code.

loop

assert: m is max in {L[1],L[2], . . . ,L[j]}.

j = j + 1

if(L[j] > m)

m = L[j]

end if

end loop

We prove this is correct just as we did before. The only diûerence is that we will

be hitting the same assertion twice in a row. The natural thing is to assume that the

computation has paused at the top of the loop after having iterated some t number of

times. We would diûerentiate between values by deûning jt and mt to be the current

value of these variables. The problem with this is that it might make you tempted to

assume something based on what has come before. Instead, suppose you have just üown

in from Mars and absolutely the only thing you know is that you are at the top of the

loop, jû and mû are the current value of these variables, and the assertion that mû is max

www.cambridge.org/9781009302142
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 The Steps to Develop an Iterative Algorithm 9

in {L[1],L[2], . . . ,L[jû]} is true. As before, the if gives two cases. When the if condition

is true, then the assertion from the code is jûû = jû + 1; L[jûû]>mû; and mûû = L[jûû]. From

this you must prove that when the computation gets back to the top of the loop, the

assertion will again be true, namely, that mûû is max in {L[1],L[2], . . . ,L[jûû]}. You

could prove this formally or informally. This proves that once the assertion at the top

of the loop has been established, the code will maintain it for as many iterations as

needed. We will refer to such assertions as loop invariants.

Correctness: Together these techniques formally prove that your code works. Equally

important, understanding these steps will help you write correct code in the ûrst place.

Game of Life: Don9t worry so much. Taking one step at a time is a lower stress way to

live your life.

begin routine Life(me)

�pre 2 cond�: I am born

Hopefully my parents help

loop

�loop 2 invariant�: I am well and reasonably on track

exit when (I die)

Maintain the loop invariant

Make a little progress

Make the world a little better

end loop

�post 2 cond�: It was a well spent and good life

end routine

1.2 The Steps to Develop an Iterative Algorithm

Iterative Algorithms: A good way to structure many computer programs is to store the

key information you currently know in some data structure and then have each iteration

of the main loop take a step toward your destination by making a simple change to this

data.

Loop Invariant: A loop invariant expresses important relationships among the

variables that must be true at the start of every iteration and when the loop terminates.

If it is true, then the computation is still on the road. If it is false, then the algorithm

has failed.

The Code Structure: The basic structure of the code is as follows.

begin routine

�pre-cond�

codepre-loop % Establish loop invariant

loop

�loop-invariant�

www.cambridge.org/9781009302142
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 1 Iterative Algorithms: Measures of Progress and Loop Invariants

exit when exit-cond �

codeloop % Make progress while maintaining the loop invariant

end loop

codepost-loop % Clean up loose ends

�post-cond�

end routine

Proof of Correctness: Naturally, you want to be sure your algorithm will work on all

speciûed inputs and give the correct answer.

Running Time: You also want to be sure that your algorithm completes in a reasonable

amount of time.

The Most Important Steps: If you need to design an algorithm, do not start by typing

in code without really knowing how or why the algorithm works. Instead, I recommend

ûrst accomplishing the following tasks. See Figure 1.1. These tasks need to ût together

in very subtle ways. You may have to cycle through them a number of times, adjusting

what you have done, until they all ût together as required.

Define Problem Define Loop

Invariants

Define Step

Make Progress Initial Conditions Ending

Exit

Define Exit Condition Maintain Loop Inv

Define Measure of

Progress

79 km

to school

Fig. 1.1 The requirements of an iterative algorithm.

1) Specifications: What problem are you solving? What are its pre- and

postconditions4i.e., where are you starting and where is your destination?

2) Basic Steps: What basic steps will head you more or less in the correct direction?

3) Measure of Progress: You must deûne a measure of progress: where are the

distance markers along the road?

www.cambridge.org/9781009302142
www.cambridge.org

Cambridge University Press & Assessment
978-1-009-30214-2 — How to Think about Algorithms
Jeff Edmonds
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 The Steps to Develop an Iterative Algorithm 11

4) The Loop Invariant: You must deûne a loop invariant that will give a picture of the

state of your computation when it is at the top of the main loop, in other words, deûne

the road that you will stay on.

5) Main Steps: For every location on the road, you must write the pseudocode codeloop

to take a single step. You do not need to start with the ûrst location. I recommend ûrst

considering a typical step to be taken during the middle of the computation.

6) Make Progress: Each iteration of your main step must make progress according to

your measure of progress.

7) Maintain Loop Invariant: Each iteration of your main step must ensure that the

loop invariant is true again when the computation gets back to the top of the loop.

(Induction will then prove that it remains true always.)

8) Establishing the Loop Invariant: Now that you have an idea of where you are

going, you have a better idea about how to begin. You must write the pseudocode

codepre-loop to initially establish the loop invariant. How do you get from your house

onto the correct road?

9) Exit Condition: You must write the condition �exit-cond� that causes the compu-

tation to break out of the loop.

10) Ending: How does the exit condition together with the invariant ensure that the

problem is solved? When at the end of the road but still on it, how do you produce the

required output? You must write the pseudocode codepre-loop to clean up loose ends

and to return the required output.

11) Termination and Running Time: How much progress do you need to make before

you know you will reach this exit? This is an estimate of the running time of your

algorithm.

12) Special Cases: When ûrst attempting to design an algorithm, you should only

consider one general type of input instances. Later, you must cycle through the steps

again considering other types of instances and special cases. Similarly, test your

algorithm by hand on a number of diûerent examples.

13) Coding and Implementation Details: Now you are ready to put all the pieces

together and produce pseudocode for the algorithm. It may be necessary at this point

to provide extra implementation details.

14) Formal Proof: If the above pieces ût together as required, then your algorithm

works.

Example 1.2.1 (The Find-Max Two-Finger Algorithm to Illustrate These Ideas)

1) Specifications: An input instance consists of a list L(1..n) of elements. The output

consists of an index i such that L(i) has maximum value. If there are multiple entries

with this same value, then any one of them is returned.

www.cambridge.org/9781009302142
www.cambridge.org

