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Introduction

Robotics inherently deals with things that move in the world. We live in an era

of rovers on Mars, drones surveying the Earth, and, soon, self-driving cars. And,

although specific robots have their subtleties, there are also some common issues

we must face in all applications, particularly state estimation and control.

The state of a robot is a set of quantities, such as position, orientation, and ve-

locity, that, if known, fully describe that robot’s motion over time. Here we focus

entirely on the problem of estimating the state of a robot, putting aside the notion

of control. Yes, control is essential, as we would like to make our robots behave

in a certain way. But, the first step in doing so is often the process of determining

the state. Moreover, the difficulty of state estimation is often underestimated for

real-world problems, and thus it is important to put it on an equal footing with

control.

In this book, we introduce the classic estimation results for linear systems cor-

rupted by Gaussian measurement noise. We then examine some of the extensions

to nonlinear systems with non-Gaussian noise. In a departure from typical esti-

mation texts, we take a detailed look at how to tailor general estimation results

to robots operating in three-dimensional space, advocating a particular approach

to handling rotations.

The rest of this introduction provides a little history of estimation, discusses

types of sensors and measurements, and introduces the problem of state estima-

tion. It concludes with a breakdown of the contents of the book and provides

some other suggested reading.

1.1 A Little History

About 4,000 years ago, the early seafarers were faced with a vehicular state esti-

mation problem: how to determine a ship’s position while at sea. Primitive charts

and observations of the sun allowed local navigation along coastlines. Early in-

struments also helped with navigation. The astrolabe was a handheld model of

the universe that allowed various astronomical problems to be solved; it could

be used as an inclinometer to determine latitude, for example. Its origins can be

traced to the Hellenistic civilization around 200 BC and was greatly advanced

in the Islamic world starting in the eighth century by mathematician Muham-

mad al-Fazārı̄ and astronomer Abū al-Battănı̄ (aka, Albatenius). Also around

100 BC in ancient Greece, the so-called Antikythera mechanism was the world’s
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first analogue computer capable of predicting astronomical positions and eclipses

decades into the future.Figure 1.1

Quadrant. A tool

used to measure

angles.

Despite these early capabilities, it was not until the fifteenth century that global

navigation on the open sea became widespread with the advent of additional key

technologies and tools. The mariner’s compass, an early form of the magnetic

compass, allowed crude measurements of direction to be made. Together with

coarse nautical charts, the compass made it possible to sail along rhumb lines

between key destinations (i.e., following a compass bearing). A series of instru-

ments was then gradually invented that made it possible to measure the angle

between distant points (i.e., cross-staff, astrolabe, quadrant, sextant, theodolite)

with increasing accuracy.

These instruments allowed latitude to be determined at sea fairly readily usingFigure 1.2

Harrison’s H4. The

first clock able to

keep accurate time at

sea, enabling

determination of

longitude.

celestial navigation. For example, in the Northern Hemisphere, the angle be-

tween the North Star, Polaris, and the horizon provides the latitude. Longitude,

however, was a much more difficult problem. It was known early on that an ac-

curate timepiece was the missing piece of the puzzle for the determination of

longitude. The behaviours of key celestial bodies appear differently at different

locations on the Earth. Knowing the time of day therefore allows longitude to be

inferred. In 1764, British clockmaker John Harrison built the first accurate port-

able timepiece that effectively solved the longitude problem; a ship’s longitude

could be determined to within about 10 nautical miles.

Estimation theory also finds its roots in astronomy. The method of least squares

was pioneered by Gauss,1 who developed the technique to minimize the impact

Carl Friedrich Gauss

(1777–1855) was a

German

mathematician who

contributed

significantly to many

fields including

statistics and

estimation. Much of

this book his based on

his work.

of measurement error in the prediction of orbits. Gauss reportedly used least

squares to predict the position of the dwarf planet Ceres after it passed behind

the Sun, accurate to within half a degree (about nine months after it was last

seen). The year was 1801, and Gauss was 23. Later, in 1809, he proved that the

least-squares method is optimal under the assumption of normally distributed

errors (Gauss, 1809) and later still he removed this assumption (Gauss, 1821,

1823). Most of the classic estimation techniques in use today can be directly

related to Gauss’ least-squares method.

The idea of fitting models to minimize the impact of measurement error car-

ried forward, but it was not until the middle of the twentieth century that estima-

tion really took off. This was likely correlated with the dawn of the computer age.

In 1960, Kalman published two landmark papers that have defined much of what
Rudolf Emil Kálmán

(1930–2016) was a

Hungarian-born

American electrical

engineer,

mathematician, and

inventor. He is famous

for the Kalman filter

and introducing the

notions of

controllability and

observability in

systems theory.

has followed in the field of state estimation. First, he introduced the notion of

observability (Kalman, 1960a), which tells us when a state can be inferred from

a set of measurements in a dynamic system. Second, he introduced an optimal

framework for estimating a system’s state in the presence of measurement noise

(Kalman, 1960b); this classic technique for linear systems (whose measurements

are corrupted by Gaussian noise) is famously known as the Kalman filter, and

has been the workhorse of estimation for the more than 60 years since its in-

ception. Although used in many fields, it has been widely adopted in aerospace

1 There is some debate as to whether Adrien Marie Legendre might have come up with least squares

before Gauss.
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applications. Researchers at the National Aeronautics and Space Administra-

tion (NASA) were the first to employ the Kalman filter to aid in the estimation

of spacecraft trajectories on the Ranger, Mariner, and Apollo programs. In par-

ticular, the on-board computer on the Apollo 11 Lunar Module, the first manned

spacecraft to land on the surface of the Moon, employed a Kalman filter to es-

timate the module’s position above the lunar surface based on noisy inertial and

radar measurements.

Many incremental improvements have been made to the field of state estima-

tion since these early milestones. Faster and cheaper computers have allowed

much more computationally complex techniques to be implemented in practical

systems. Today, exciting new sensing technologies are coming along (e.g., digital

cameras, laser imaging, the Global Positioning System) that pose new challenges

to this old field.

1.2 Sensors, Measurements and Problem Definition

To understand the need for state estimation is to understand the nature of sensors.

All sensors have a limited precision. Therefore, all measurements derived from Figure 1.3

Theodolite. A better

tool to measure

angles.

real sensors have associated uncertainty. Some sensors are better at measuring

specific quantities than others, but even the best sensors still have a degree of

imprecision. When we combine various sensor measurements into a state esti-

mate, it is important to keep track of all the uncertainties involved and therefore

(it is hoped) know how confident we can be in our estimate.

In a way, state estimation is about doing the best we can with the sensors we

have. This, however, does not prevent us from, in parallel, improving the quality

of our sensors. A good example is the theodolite sensor that was developed in

1787 to allow triangulation across the English Channel. It was much more precise

than its predecessors and helped show that much of England was poorly mapped

by tying measurements to well-mapped France.

It is useful to put sensors into two categories: interoceptive2 and exterocep-

tive. These are actually terms borrowed from human physiology, but they have

become somewhat common in engineering. Some definitions follow:3

in·tero·cep·tive [int-@-rō-’sep-tiv], adjective: of, relating to, or being stimuli

arising within the body.

ex·tero·cep·tive [ek-st@-rō-’sep-tiv], adjective: relating to, being, or activated

by stimuli received by an organism from outside.

Typical interoceptive sensors are the accelerometer (measures translational ac-

celeration), gyroscope (measures angular rate), and wheel odometer (measures

angular rate). Typical exteroceptive sensors are the camera (measures range/bearing

to a landmark or landmarks) and time-of-flight transmitter/receiver (e.g., laser

rangefinder, pseudolites, Global Positioning System (GPS) transmitter/receiver).

Roughly speaking, we can think of exteroceptive measurements as being of the

2 Sometimes proprioceptive is used synonomously.
3 Merriam-Webster’s Dictionary.
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position and orientation of a vehicle, whereas interoceptive ones are of a vehi-

cle’s velocity or acceleration. In most cases, the best state estimation concepts

make use of both interoceptive and exteroceptive measurements. For example,

the combination of a GPS receiver (exteroceptive) and an inertial measurement

unit (IMU) (three linear accelerometers and three rate gyros; interoceptive) is a

popular means of estimating a vehicle’s position/velocity on Earth. And, the com-

bination of a Sun/star sensor (exteroceptive) and three rate gyros (interoceptive)

is commonly used to carry out pose determination on satellites.

Now that we understand a little bit about sensors, we are prepared to define

the problem that will be investigated in this book:

Estimation is the problem of reconstructing the underlying state of a system given a sequence

of measurements as well as a prior model of the system.

There are many specific versions of this problem and just as many solutions. The

goal is to understand which methods work well in which situations, in order to

pick the best tool for the job.

1.3 How This Book Is Organized

The book is broken into three main parts:

I. Estimation Machinery

II. Three-Dimensional Machinery

III. Applications

The first part, Estimation Machinery, presents classic and state-of-the-art esti-

mation tools, without the complication of dealing with things that live in three-

dimensional space (and therefore translate and rotate); the state to be estimated is

assumed to be a generic vector. For those not interested in the details of working

in three-dimensional space, this first part can be read in a stand-alone manner. It

covers both recursive state estimation techniques and batch methods (less com-

mon in classic estimation books). As is commonplace in robotics and machine

learning today, we adopt a Bayesian approach to estimation in this book. We

contrast (full) Bayesian methods with maximum a posteriori (MAP) methods,

and attempt to make clear the difference between these when faced with nonlin-

ear problems. The book also connects continuous-time estimation with Gaussian

process regression from the machine-learning world. Finally, it touches on some

practical issues, such as determining how well an estimator is performing, and

handling outliers and biases.

EARLY ESTIMATION

MILESTONES

1654 Pascal and Fer-

mat lay founda-

tions of probabil-

ity theory

1764 Bayes’ rule

1801 Gauss uses

least-squares to

estimate the orbit

of the planetoid

Ceres

1805 Legendre pub-

lishes ‘least-

squares’

1913 Markov chains

1933 (Chapman)–

Kolmogorov

equations

1949 Wiener filter

1960 Kalman (Bucy)

filter

1965 Rauch–Tung–

Striebel smoother

1970 Jazwinski coins

‘Bayes filter’

The second part, Three-Dimensional Machinery, provides a basic primer on

three-dimensional geometry and gives a detailed but accessible introduction to

matrix Lie groups. To represent an object in three-dimensional space, we need

to talk about that object’s translation and rotation. The rotational part turns out

to be a problem for our estimation tools because rotations are not vectors in the

usual sense and so we cannot naively apply the methods from Part I to three-

dimensional robotics problems involving rotations. Part II, therefore, examines
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the geometry, kinematics, and probability/statistics of rotations and poses (trans-

lation plus rotation).

Finally, in the third part, Applications, the first two parts of the book are

brought together. We look at a number of classic three-dimensional estimation

problems involving objects translating and rotating in three-dimensional space.

We show how to adapt the methods from Part I based on the knowledge gained in

Part II. The result is a suite of easy-to-implement methods for three-dimensional

state estimation. The spirit of these examples can also, we hope, be adapted to

create other novel techniques moving forward.

Appendix A provides a summary of matrix algebra and calculus that can serve

as a primer or reference while reading this book.

1.4 Relationship to Other Books

There are many other books on state estimation and robotics, but very few cover

both topics simultaneously. We briefly describe a few works that do cover these

topics and their relationships to this book.

Probabilistic Robotics by Thrun et al. (2006) is a great introduction to mo-

bile robotics, with a large focus on state estimation in relation to mapping and

localization. It covers the probabilistic paradigm that is dominant in much of

robotics today. It mainly describes robots operating in the two-dimensional, hor-

izontal plane. The probabilistic methods described are not necessarily limited to

the two-dimensional case, but the details of extending to three dimensions are

not provided.

Computational Principles of Mobile Robotics by Dudek and Jenkin (2010) is

a great overview book on mobile robotics that touches on state estimation, again

in relation to localization and mapping methods. It does not work out the details

of performing state estimation in 3D.

Mobile Robotics: Mathematics, Models, and Methods by Kelly (2013) is an-

other excellent book on mobile robotics and covers state estimation extensively.

Three-dimensional situations are covered, particularly in relation to satellite-

based and inertial navigation. As the book covers all aspects of robotics, it does

not delve deeply into how to handle rotational variables within three-dimensional

state estimation.

Robotics, Vision, and Control by Corke (2011) is another great and compre-

hensive book that covers state estimation for robotics, including in three dimen-

sions. Similarly to the previously mentioned book, the breadth of Corke’s book

necessitates that it not delve too deeply into the specific aspects of state estima-

tion treated herein.

Bayesian Filtering and Smoothing by Särkkä (2013) is a super book focused

on recursive Bayesian methods. It covers the recursive methods in far more depth

than this book, but does not cover batch methods nor focus on the details of

carrying out estimation in three dimensions.

Stochastic Models, Information Theory, and Lie Groups: Classical Results

and Geometric Methods by Chirikjian (2009), an excellent two-volume work,

is perhaps the closest in content to the current book. It explicitly investigates the
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consequences of carrying out state estimation on matrix Lie groups (and hence

rotational variables). It is quite theoretical in nature and goes beyond the current

book in this sense, covering applications beyond robotics.

Engineering Applications of Noncommutative Harmonic Analysis: With Em-

phasis on Rotation and Motion Groups by Chirikjian and Kyatkin (2001) and

the recent update, Harmonic Analysis for Engineers and Applied Scientists: Up-

dated and Expanded Edition (Chirikjian and Kyatkin, 2016), also provide key

insights to representing probability globally on Lie groups. In the current book,

we limit ourselves to approximate methods that are appropriate to the situation

where rotational uncertainty is not too high.

Although they are not estimation books per se, it is worth mentioning Op-

timization on Matrix Manifolds by Absil et al. (2009) and An Introduction to

Optimization on Smooth Manifolds by Boumal (2022), which discuss optimiza-

tion problems where the quantity being optimized is not necessarily a vector, a

concept that is quite relevant to robotics because rotations do not behave like

vectors (they form a Lie group).

The current book is somewhat unique in focusing only on state estimation

and working out the details of common three-dimensional robotics problems in

enough detail to be easily implemented for many practical situations.
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Primer on Probability Theory

In what is to follow, we will be using a number of basic concepts from proba-

bility and statistics. This chapter serves to provide a review of these concepts.

For a classic book on probability and random processes, see Papoulis (1965).

For a light read on the history of probability theory, Devlin (2008) provides a

wonderful introduction; this book also helps to understand the difference be-

tween the frequentist and Bayesian views of probability. We will primarily adopt

the latter in our approach to estimation, although this chapter mentions some

basic frequentist statistical concepts in passing. We begin by discussing gen-

eral probability density functions (PDFs) and then focus on the specific case of

Gaussian PDFs. The chapter concludes by introducing Gaussian processes, the

continuous-time version of Gaussian random variables.

2.1 Probability Density Functions

2.1.1 Definitions

We say that a random variable, x, is distributed according to a particular PDF.

Let p(x) be a PDF for the random variable, x, over the interval
[
a, b

]
. This is a

nonnegative function that satisfies

∫
b

a

p(x) dx = 1. (2.1)

That is, it satisfies the axiom of total probability. Note that this is probability

density, not probability.

Probability is given by the area under the density function. For example, the

probability that x lies between c and d, Pr(c ≤ x ≤ d), is given by

Pr(c ≤ x ≤ d) =

∫
d

c

p(x) dx. (2.2)

We will also make use of the cumulative distribution function (CDF)1 on occa-

sion, which is given by

1 The classical treatment of probability theory starts with CDFs, Kolmogorov’s three axioms, and

works out the details of probability densities as a consequence of being the derivative of CDFs. As is

common in robotics, we will work directly with densities in a Bayesian framework, and therefore we

will skip these formalities and present primarily the results we need using densities. We shall be

careful to use the term density, not distribution, as we are working with continuous variables

throughout this book.
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10 Primer on Probability Theory

Figure 2.1

Probability density

over a finite interval

(a). Probability of

being within a

sub-interval (b).

P (x) = Pr(x′ ≤ x) =

∫
x

−∞

p(x′) dx′, (2.3)

the probability that a random variable is less than or equal to x. We have that

P (x) is nondecreasing, right-continuous, and 0 ≤ P (x) ≤ 1 with limx→−∞

P (x) = 0 and limx→∞ P (x) = 1.

Figure 2.1 depicts a general PDF over a finite interval as well as the probabil-

ity of being within a sub-interval. We will use PDFs to represent the likelihood

of x being in all possible states in the interval, [a, b], given some evidence in the

form of data.

We can also introduce a conditioning variable to PDFs. Let p(x|y) be a PDF
over x ∈

[
a, b

]
conditioned on y ∈

[
r, s

]
such that

(∀y)

∫
b

a

p(x|y) dx = 1. (2.4)

We may also denote joint probability densities for N -dimensional continuous

variables in our framework as p(x), where x = (x1, . . . , xN)with xi ∈
[
ai, bi

]
.

Note that we can also use the notation

p(x1, x2, . . . , xN) (2.5)

in place of p(x). Sometimes we even mix and match the two and write

p(x,y) (2.6)

for the joint density of x and y. In the N -dimensional case, the axiom of total

probability requires

∫
b

a

p(x) dx =

∫
bN

aN

· · ·

∫
b2

a2

∫
b1

a1

p (x1, x2, . . . , xN) dx1 dx2 · · · dxN = 1,

(2.7)

where a = (a1, a2, . . . , aN) and b = (b1, b2, . . . , bN). In what follows, we will

sometimes simplify notation by leaving out the integration limits, a and b.

2.1.2 Marginalization, Bayes’ Rule, Inference

We can always factor a joint probability density into a conditional and a uncon-

ditional factor:2

2 In the specific case that x and y are statistically independent, we can factor the joint density as

p(x,y) = p(x)p(y).
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p(x,y) = p(x|y)p(y) = p(y|x)p(x). (2.8)

This one statement has important ramifications.

First, the process of integrating3 out one or more variables from a joint density,

p(x,y), is called marginalization. For example, integrating the joint density

over x reveals
∫

p(x,y) dx =

∫

p(x|y)p(y) dx =

∫

p(x|y) dx
︸ ︷︷ ︸

1

p(y) = p(y). (2.9)

The result, p(y), is the marginal of the joint density for y. Clearly then, the

marginal for x is p(x) =
∫
p(x,y) dy.

Second, rearranging (2.8) gives Bayes’ rule (aka Bayes’ theorem): Thomas Bayes

(1701–1761) was an

English statistician,

philosopher and

Presbyterian minister,

known for having

formulated a specific

case of the theorem

that bears his name.

Bayes never published

what would eventually

become his most

famous

accomplishment; his

notes were edited and

published after his

death by Richard

Price (Bayes, 1764).

p(x|y) =
p(y|x)p(x)

p(y)
. (2.10)

We can use this to infer the posterior or likelihood of the state given some mea-

surements, p(x|y), if we have a prior PDF over the state, p(x), and the sensor

model, p(y|x). We do this by expanding the denominator so that

p(x|y) =
p(y|x)p(x)

∫
p(y|x)p(x) dx

. (2.11)

We compute the denominator, p(y), by marginalization as follows:

p(y) =

∫

p(x,y) dx =

∫

p(y|x)p(x) dx, (2.12)

which can be quite expensive to calculate in the general case. In Bayesian infer-

ence, p(x) is known as the prior density, while p(x|y) is known as the posterior

density. Thus, all a priori information is encapsulated in p(x), while p(x|y) con-

tains the a posteriori information.

2.1.3 Expectations and Moments

The expectation operator, E[·], is an important tool when working with proba-

bilities. It allows us to work out the ‘average’ value of a function of a random

variable, f(x), and is defined as

E[f(x)] =

∫

f(x) p(x) dx, (2.13)

where p(x) is the PDF for the random variable, x, and the integration is as-

sumed to be over the domain of x. This is sometimes referred to as the law of the

unconscious statistician (LOTUS).4

3 When integration limits are not stated, they are assumed to be over the entire allowable domain of the

variable; e.g., x from a to b.
4 LOTUS is named so due to the fact that many practitioners apply (2.13) as a definition without

realizing that it requires a rigorous proof.
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