> Chapter 1: Functions

Exercise 1.1

 $1 \quad x \mapsto x + 1 \quad x \in \mathbb{R}$

For one input value there is just one output value so this is a **one-one** mapping

$$2 \quad x \mapsto x^2 + 5 \quad x \in \mathbb{R}$$

For two input values there is just one output value so this is a **many-one** mapping

3 $x \mapsto x^3$ $x \in \mathbb{R}$

For one input value there is just one output value so this is a **one-one** mapping

For one input value there is just one output value so this is a **one-one** mapping

For one input value there is just one output value so this is a **one-one** mapping

 $6 \quad x \mapsto x^2 + 1 \quad x \in \mathbb{R}, \, x \ge 0$

For one input value there is just one output value so this is a **one-one** mapping

CAMBRIDGE IGCSE™ AND O LEVEL ADDITIONAL MATHEMATICS: WORKED SOLUTIONS MANUAL

For one input value there is just one output value so this is a **one-one** mapping

For one input value there are two output values so this is a **one-many** mapping

TIP

One-one mappings and many-one mappings are called functions.

Exercise 1.2

1 The following mappings from Exercise 1.1 are functions:

 $\begin{array}{ll} x \mapsto x+1 & x \in \mathbb{R}, \\ x \mapsto x^2+5 & x \in \mathbb{R}, \\ x \mapsto x^3 & x \in \mathbb{R}, \\ x \mapsto 2^x & x \in \mathbb{R}, \\ x \mapsto \frac{1}{x} & x \in \mathbb{R}, x > 0, \\ x \mapsto x^2+1 & x \in \mathbb{R}, x \ge 0 \\ x \mapsto \frac{12}{x} & x \in \mathbb{R}, x > 0 \end{array}$

TIP

If we draw all positive vertical lines on the graph of a mapping, the mapping is:

- a function if each line cuts the graph no more than once
- not a function if one line cuts the graph more than once.

2 c $f(x) = 7 - 2x, -1 \le x \le 4$

The graph of y = 7 - 2x has a gradient -2 and a *y*-intercept 7

When x = -1, y = 7 - 2(-1) = 9When x = 4, y = 7 - 2(4) = -1The range of f is $-1 \le f(x) \le 9$

d
$$f(x) = x^2, -3 \le x \le 3$$

The minimum value of the expression x^2 is 0 which occurs when x = 0

The maximum value of the expression x^2 is 9 which occurs when x = -3 and x = 3

So, the range of the function $f(x) = x^2, -3 \le x \le 3$ is $0 \le f(x) \le 9$

Cambridge University Press & Assessment 978-1-009-29976-3 — Cambridge IGCSE[™] and O Level Additional Mathematics Worked Solutions Manual with Digital Version (2 Years' Access) 3rd Edition Muriel James Excerpt <u>More Information</u>

Chapter 1: Functions

3 $g(x) = x^2 + 2$ for $x \ge 0$

The minimum value of the expression $x^2 + 2$ is 2 which occurs when x = 0

When x = 0, $y = 0^2 + 2 = 2$

There is no maximum value of the expression $x^2 + 2$ for the domain $x \ge 0$

The range is $g(x) \ge 2$

TIP

The minimum value of an expression of the form $(ax + k)^2$ is 0

The minimum value occurs when ax + k = 0,

i.e., when $x = \frac{-k}{a}$

$$4 \quad f(x) = x^2 - 4 \quad x \in \mathbb{R}$$

 $f(x) = x^2 - 4$ is a positive quadratic function, so the graph will be of the form

The minimum value of the expression $x^2 - 4$ is -4 which occurs when x = 0

When x = 0, $y = 0^2 - 4 = -4$

There is no maximum value of the expression $x^2 - 4$ for the domain $x \in \mathbb{R}$

The range is $f(x) \ge -4$

5 $f(x) = (x - 1)^2 + 5$ for $x \ge 1$

 $f(x) = (x - 1)^2 + 5$ is a positive quadratic function, so the graph will be of the form

The minimum value of the expression $(x - 1)^2 + 5$ is 5 which occurs when x = 1

When x = 1, $y = (1 - 1)^2 + 5 = 5$

There is no maximum value of the expression $(x - 1)^2 + 5$ for the domain $x \ge 1$

The range is $f(x) \ge 5$

6
$$f(x) = (2x + 1)^2 - 5 \text{ for } x \ge -\frac{1}{2}$$

CAMBRIDGE IGCSE™ AND O LEVEL ADDITIONAL MATHEMATICS: WORKED SOLUTIONS MANUAL

8

 $f(x) = (2x + 1)^2 - 5$ is a positive quadratic function, so the graph will be of the form

The minimum value of the expression $(2x + 1)^2 - 5$

is
$$-5$$
 which occurs when $x = -\frac{1}{2}$

When
$$x = -\frac{1}{2}$$
, $y = \left(2 \times -\frac{1}{2} + 1\right)^2 - 5 = -5$

There is no maximum value of the expression

$$(2x + 1)^2 - 5$$
 for the domain $x \ge -\frac{1}{2}$
The range is $f(x) \ge -5$

7 f:
$$x \mapsto 10 - (x - 3)^2, 2 \le x \le 7$$

f : $x \mapsto 10 - (x - 3)^2$ is a negative quadratic function, so the graph will be of the form

The maximum value of the expression $10 - (x - 3)^2$ is 10, which occurs when x = 3

When x = 2, f : $x \mapsto 10 - (2 - 3)^2 = 9$

When x = 7, f : $x \mapsto 10 - (7 - 3)^2 = -6$

The range of $f: x \mapsto 10 - (x - 3)^2$ for $2 \le x \le 7$ is $-6 \le f(x) \le 10$

TIP

When finding the range of a function, it is helpful to be familiar with the sketches of graphs of the form $y = \frac{k}{x}$, $y = k\sqrt{x}$, $y = \sqrt{x + k}$, $y = k^x$ etc.

 $f(x) = 3 + \sqrt{x - 2} \text{ for } x \ge 2$

The minimum value of the expression $3 + \sqrt{x-2}$ is 3, which occurs when x = 2

When x = 2, $f(x) = 3 + \sqrt{2 - 2} = 3$

There is no maximum value of the expression $3 + \sqrt{x-2}$ for the domain $x \ge 2$

The range is $f(x) \ge 3$

Exercise 1.3

fg(2) g acts on 2 first and $g(2) = 2^2 - 1 = 3$ = f(3) f is the function 'multiply by 2 then add 3' = 2(3) + 3

TIP

To form a composite function, the domain of f must be chosen so that the whole of the range of f is included in the domain of g.

2 gf(5) f acts on 5 first and $f(5) = 5^2 - 1 = 24$ = g(24) f is the function 'multiply by 2 then add 3' = 2(24) + 3

3 $f(x) = (x+2)^2 - 1$ for $x \in \mathbb{R}$

 $f^{2}(3)$ means ff(3)

ff(3) f acts on 3 first and $f(3) = (3 + 2)^2 - 1 = 24$

 $=(24+2)^2-1$

= 675

Cambridge University Press & Assessment 978-1-009-29976-3 — Cambridge IGCSE[™] and O Level Additional Mathematics Worked Solutions Manual with Digital Version (2 Years' Access) 3rd Edition **Muriel James** Excerpt More Information

Chapter 1: Functions

- gf(18) f acts on 18 first and f(18) $= 1 + \sqrt{18 - 2} = 5$ g is the function 'divide into 10, = g(5)then subtract 1' $=\frac{10}{5}-1$ = 1 g acts on 7 first and $g(7) = \frac{2(7) + 4}{7 - 5} = 9$ 5 fg(7) = f(9)f is the function 'subtract 1, square then add 3' $=(9-1)^2+3$ = 67

a $x \mapsto \sqrt{x} + 2$ is represented by hk 6

- Check: hk(x)means k acts on x first and $\mathbf{k}(x) = \sqrt{x}$ $= h(\sqrt{x})$ h is the function 'add 2' $=\sqrt{x}+2$
- **b** $x \mapsto \sqrt{x+2}$ is represented by kh Check: kh(x)means h acts on x first and h(x) = x + 2= k(x + 2)k is the function 'square root' $=\sqrt{x+2}$
- 7 gf(x)f acts on x first and f(x) = 3x + 1= g(3x + 1) g is the function 'subtract from 2 then divide into 10' $=\frac{10}{2-(3x+1)}$ But gf(x) = 5, so $\frac{10}{2 - (3x + 1)} = 5$ Solve $\frac{10}{2 - 3x - 1} = 5$ $\frac{10}{1-3x} = 5$ 10 = 5(1 - 3x)10 = 5 - 15x15x = -5
- h acts on x first and h(x) = 3x 58 gh(x)= g(3x - 5) g is the function 'square then add 2' $=(3x-5)^2+2$ But gh(x) = 51 so $(3x - 5)^2 + 2 = 51$ Solve $(3x - 5)^2 + 2 = 51$ $(3x - 5)^2 = 49$ square root both sides $3x - 5 = \pm 7$ (remember \pm) 3x - 5 = 7 or 3x - 5 = -73x = 12 or 3x = -2x = 4 or $x = -\frac{2}{3}$ fg(x) g acts on x first and $g(x) = \frac{3}{x}$ 9 $=f\left(\frac{3}{x}\right)$ f is the function 'square then subtract 3' $=\left(\frac{3}{r}\right)^2 - 3$ But $fg(x) = 13 \operatorname{so} \left(\frac{3}{x}\right)^2 - 3 = 13$ Solve $\left(\frac{3}{x}\right)^2 - 3 = 13$ $\left(\frac{3}{r}\right)^2 = 16$ square root both sides $\frac{3}{x} = \pm 4$ $3 = \pm 4x$ $x = \pm \frac{3}{4}$ However, as x > 0, the only solution is $x = \frac{3}{4}$

f acts on g first and $f(x) = \frac{3x+5}{x-2}$ **10** gf(*x*) $=g\left(\frac{3x+5}{x-2}\right)$ g is the function 'subtract 1 then divide by 2' $=\frac{\left(\frac{3x+5}{x-2}-1\right)}{2}$ But gf(x) = 12 so $\frac{\left(\frac{3x+5}{x-2}-1\right)}{2} = 12$

© in this web service Cambridge University Press & Assessment

 $x = -\frac{1}{2}$

CAMBRIDGE IGCSE™ AND O LEVEL ADDITIONAL MATHEMATICS: WORKED SOLUTIONS MANUAL

Solve
$$\frac{\left(\frac{3x+5}{x-2}-1\right)}{2} = 12$$
$$\frac{3x+5}{x-2} - 1 = 24$$
$$\frac{3x+5}{x-2} = 25$$
$$3x+5 = 25(x-2)$$
$$3x+5 = 25x-50$$
$$-22x = -55$$
$$x = 2.5$$

11 fg(x) g acts on x first and
$$g(x) = \frac{10}{x}$$

$$= f\left(\frac{10}{x}\right) \qquad \text{f is the function 'add 4, square then add 3'}$$
$$= \left(\frac{10}{x} + 4\right)^2 + 3$$
But fg(x) = 39 so $\left(\frac{10}{x} + 4\right)^2 + 3 = 39$ Solve $\left(\frac{10}{x} + 4\right)^2 + 3 = 39$

$$\left(\frac{10}{x} + 4\right)^2 = 36$$
 square root both sides
 $\frac{10}{x} + 4 = \pm 6$
 $\frac{10}{x} + 4 = 6$ or $\frac{10}{x} + 4 = -6$
 $\frac{10}{x} = 2$ or $\frac{10}{x} = -10$
 $x = 5$ or $x = -1$

However, x > 0 so the only solution is x = 5

12 gh(x) h acts on x first and h(x) =
$$2x - 7$$

= g($2x - 7$) g is the function 'square then
subtract 1'
= $(2x - 7)^2 - 1$
But gh(x) = 0 so $(2x - 7)^2 - 1 = 0$

Solve $(2x - 7)^2 - 1 = 0$ $(2x - 7)^2 = 1$ square root both sides $2x - 7 = \pm 1$ 2x - 7 = -1 or 2x - 7 = 1 2x = 6 or 2x = 8x = 3 or x = 4

13 a $x \mapsto (x-1)^3$ is the composite function fg(x)Explanation:

fg(x)	means g acts on x first and $g(x) = x - 1$
= f(x - 1)	f is the function 'cube'

$$= (x - 1)^{3}$$

c $x \mapsto x - 2$ is the composite function gg(x)or $g^2(x)$

Explanation:

$$gg(x) \qquad \text{means g acts on } x \text{ first and} \\ g(x) = x - 1 \\ = g(x - 1) \qquad \text{g is the function 'subtract 1'} \\ = (x - 1) - 1 \\ = x - 2$$

14
$$f(x) = \frac{x}{x+2}$$
 for $x \in \mathbb{R}, x \neq -2$
 $g(x) = \frac{3}{x}$ for $x \in \mathbb{R}, x \neq 0$

Finding the domain of fg(x)

The domain of g(x) consists of all real numbers except $x \neq 0$ (since that input value would result in dividing by 0)

The domain of f(x) consists of all real numbers except $x \neq -2$ (since that input value would result in dividing by 0)

So, we need to exclude from the domain of g(x) the value of *x* for which g(x) = -2

Set g(x) = -2

$$\frac{3}{x} = -2$$
$$x = -\frac{3}{2}$$

Chapter 1: Functions

So the domain of fg(x) is the set of all real numbers except 0 and $-\frac{3}{2}$

This means that $x \in \mathbb{R}, x \neq -\frac{3}{2}, x \neq 0$

15 $f(x) = x^2 - 9$ for $x \in \mathbb{R}$, x < 0

$$g(x) = 10 - \frac{x}{2}$$
 for $x \in \mathbb{R}, x > 6$

Finding the domain of fg(x)

The domain of g(x) consists of all real numbers > 6The domain of f(x) consists of all real numbers < 0So x > 6 and g(x) < 0

Set
$$10 - \frac{x}{2} < 0$$

 $10 < \frac{x}{2}$
 $x > 20$

Overlap of x > 6 and x > 20 is x > 20Domain of fg(x) is $x \in \mathbb{R}$, x > 20

Finding the range of fg(x)

$$fg(x) = \left(10 - \frac{x}{2}\right)^2 - 9 \ x \in \mathbb{R}, x > 20$$

The graph of $y = fg(x) = (10 - \frac{x}{2})^2 - 9$

 $x \in \mathbb{R}, x > 20$ looks like:

$$\begin{array}{c} y \\ 40 \\ 30 \\ 20 \\ 10 \\ -10 \end{array}$$

This is a quadratic curve and the turning point occurs when $10 - \frac{x}{2} = 0$

$$x = 20$$

Hence the turning point is (20, -9)

Range is $fg(x) \in \mathbb{R}$, fg(x) > -9

17 f(x) = 2x - 6 for $x \in \mathbb{R}$ $g(x) = \sqrt{x}$ for $x \in \mathbb{R}$, $x \ge 0$

a Finding the domain of fg(x)

The domain of f(x) consists of all real numbers The domain of g(x) consists of all real numbers $x \ge 0$

 $x \ge 0$ and $g(x) \in \mathbb{R}$

So the domain of fg(x) is the set of all real numbers ≥ 0

This means that the domain of fg(x) is $x \in \mathbb{R}$, $x \ge 0$

To find the range of fg(x), first find fg(x)

 $fg(x) = 2\sqrt{x} - 6$ $x \in \mathbb{R}, x \ge 0$

The minimum value of the expression $2\sqrt{x} - 6$ is -6, which occurs when x = 0

When x = 0, $fg(x) = 2\sqrt{0} - 6 = -6$

There is no maximum value of the expression $2\sqrt{x} - 6$ for the domain $x \ge 0$.

The range is $fg(x) \in \mathbb{R}$, $fg(x) \ge -6$

b Finding the domain of gf(*x*)

The domain of f(x) consists of all real numbers. The domain of g(x) consists of all real numbers $x \ge 0$.

$$x \in \mathbb{R}$$
 and $f(x) \ge 0$

So
$$2x - 6 \ge 0$$

 $2x \ge 6$
 $x \ge 3$

So the domain of gf(x) is the set of all real numbers ≥ 3

This means that the domain of gf(x) is $x \in \mathbb{R}$, $x \ge 3$

To find the range of gf(x), first find gf(x)

 $gf(x) = \sqrt{2x - 6}$ for $x \in \mathbb{R}, x \ge 3$

The minimum value of the expression $\sqrt{2x-6}$ is 0, which occurs when x = 3

When x = 3, $gf(x) = \sqrt{2 \times 3 - 6} = 0$

There is no maximum value of the expression $\sqrt{2x-6}$ for the domain $x \ge 3$

The range is $gf(x) \in \mathbb{R}$, $gf(x) \ge 0$

Cambridge University Press & Assessment 978-1-009-29976-3 — Cambridge IGCSE[™] and O Level Additional Mathematics Worked Solutions Manual with Digital Version (2 Years' Access) 3rd Edition Muriel James Excerpt <u>More Information</u>

CAMBRIDGE IGCSETM AND O LEVEL ADDITIONAL MATHEMATICS: WORKED SOLUTIONS MANUAL

- **19** f(x) = 2x + 5 for $x \in \mathbb{R}$, x < 2 $g(x) = (x - 3)^2$ for $x \in \mathbb{R}$, x > 3
 - a i The graph of y = 2x + 5 is a straight line with gradient 2 and a y-intercept of 5 The range of f is $f(x) \in \mathbb{R}$, f(x) < 9(from substituting x = 2 into f(x) = 2x + 5)
 - ii The graph of $g(x) = (x 3)^2$ is a positive quadratic function. The graph will be U shaped.

 $(x - 3)^2$ is a square so it will always be greater or equal to zero. The smallest value it can be is 0. This occurs when x = 3 but the domain of g(x) is x > 3 so the range of g(x) > 0

The range of g is $g(x) \in \mathbb{R}$, g(x) > 0

b Finding gf(x).

f acts on x first and f(x) = 2x + 5gf(x) = g(2x + 5) g is the function 'minus 3 then square' gf(x) = $(2x + 5 - 3)^2$ gf(x) = $(2x + 2)^2$

Finding the domain of gf(x)
 The domain of g(x) consists of all real numbers > 3

The domain of f(x) consists of all real numbers < 2

So x < 2 and f(x) > 3

Set 2x + 5 > 32x > -2

x > -1

The overlap of x > -1 and x < 2 is -1 < x < 2The domain of gf(x) is $x \in \mathbb{R}$, -1 < x < 2To find the range of gf(x), first find gf(x) $gf(x) = (2x + 2)^2$ $x \in \mathbb{R}$, -1 < x < 2The graph of $y = gf(x) = (2x + 2)^2$ $x \in \mathbb{R}$, -1 < x < 2 looks like:

This is a quadratic graph and the turning point is when 2x + 2 = 0

$$x = -1$$

Hence the turning point is (-1,0)

Substituting x = 2 into $gf(x) = (2x + 2)^2$ gives 36 (which is the maximum value of gf(x))

The range of gf(x) is $gf(x) \in \mathbb{R}$, 0 < gf(x) < 36

Exercise 1.4

1	с	6-5x =2
		6 - 5x = 2 or $6 - 5x = -2$
		-5x = -4 or $-5x = -8$
		$x = \frac{4}{5}$ or $x = \frac{8}{5}$ [or as decimals 0.8 and 1.6]
		CHECK: $ 6 - 5(0.8) = 2 \checkmark$ and $ 6 - 5(1.6) = 2 \checkmark$
		Solution is: $x = 0.8$ or $x = 1.6$
	i	2x-5 = x
		2x - 5 = x or $2x - 5 = -x$
		$x = 5$ or $3x = 5$ so $x = \frac{5}{3}$
		CHECK: $ 2(5) - 5 = 5 \checkmark$
		and $\left 2\left(\frac{5}{3}\right) - 5\right = \frac{5}{3}\checkmark$
		Solution is: $x = 5$ or $x = \frac{5}{3}$
2	с	$\left 1 + \frac{x+12}{x+4}\right = 3$
		$1 + \frac{x+12}{x+4} = 3$ or $1 + \frac{x+12}{x+4} = -3$
		$\frac{x+12}{x+4} = 2$ or $\frac{x+12}{x+4} = -4$
		x + 12 = 2x + 8 or $x + 12 = -4x - 16$
		x = 4 or $5x = -28$
		$x = -\frac{28}{5}$
		or $x = -56$

Cambridge University Press & Assessment

CHECK: $|1 + \frac{4 + 12}{2}| = 3$

978-1-009-29976-3 — Cambridge IGCSE[™] and O Level Additional Mathematics Worked Solutions Manual with Digital Version (2 Years' Access) 3rd Edition

Muriel James Excerpt

More Information

3

Chapter 1: Functions

or

$$\left|1 + \frac{-5.6 + 12}{-5.6 + 4}\right| = \left|1 + \frac{6.4}{-1.6}\right| = \left|1 + \frac{32}{-8}\right|$$

$$= |1 - 4| = 3 \checkmark$$
Solution is: $x = 4$ or $x = -5.6$
f $9 - |1 - x| = 2x$
 $(9 - 2x) = |1 - x|$
 $(9 - 2x) = |1 - x|$
 $(9 - 2x) = 1 - x$ or $-(9 - 2x) = 1 - x$
 $x = 8$ or $-9 + 2x = 1 - x$
 $3x = 10$ so $x = \frac{10}{3}$
CHECK:
 $9 - |1 - 8| = 2 (8)$ and $9 - |1 - \frac{10}{3}| = 2\left(\frac{10}{3}\right)$
 $9 - 7 = 16 \varkappa$ and $9 - \frac{7}{3} = \frac{20}{3} \checkmark$
Solution is: $x = \frac{10}{3}$
c $|4 - x^2| = 2 - x$
 $4 - x^2 = 2 - x$ or $4 - x^2 = -(2 - x)$
 $x^2 - x - 2 = 0$ or $4 - x^2 = -2 + x$
 $(x - 2)(x + 1) = 0$ or $x^2 + x - 6 = 0$
 $x = 2$ or $x = -1$ or $(x + 3)(x - 2) = 0$
 $x = -3$ or $x = 2$
CHECK: If $x = 2$ and CHECK: If $x = -1$
 $|4 - 2^2| = 2 - 2$ and $4 - (-1)^2| = 2 - -1$
 $0 = 0 \checkmark$ $3 = 3 \checkmark$
CHECK: If $x = -3$
 $|4 - (-3)^2| = 2 - -3$
 $5 = 5 \checkmark$

Solution is: x = -3, x = -1 and x = 2

```
g |2x^2 + 1| = 3x
         2x^2 + 1 = 3x
                              or 2x^2 + 1 = -3x
         2x^2 - 3x + 1 = 0 or 2x^2 + 3x + 1 = 0
         (2x-1)(x-1) = 0 or (2x+1)(x+1) = 0
         x = 0.5 or x = 1
                              or x = -0.5 or x = -1
         CHECK:
         |2(0.5)^2 + 1| = 3(0.5) and |2(1)^2 + 1| = 3(1)
                 1.5 = 1.5 \checkmark and
                                           3 = 3 \checkmark
         CHECK:
         |2(-0.5)^2 + 1| = 3(-0.5) and |2(-1)^2 + 1| = 3(-1)
         1.5 = -1.5 \times and 3 = -3 \times
         Solution is: x = 0.5 and x = 1
4 a y = x + 4
        y = |x^2 - 16|
        |x^2 - 16| = x + 4
         x^2 - 16 = x + 4 or x^2 - 16 = -x - 4
         x^2 - x - 20 = 0
                           or x^2 + x - 12 = 0
         (x-5)(x+4) = 0 or (x+4)(x-3) = 0
         x = 5 \text{ or } x = -4
                              or x = -4 or x = 3
         If x = 5, substituting into y = x + 4
                                  v = 5 + 4
                                  v = 9
         or substituting into y = |x^2 - 16|
                            v = |5^2 - 16|
                            v = 9 \checkmark
         If x = -4, substituting into y = x + 4
                                    y = -4 + 4
                                    y = 0
         or substituting into y = |x^2 - 16|
                            y = |(-4)^2 - 16|
                            v = 0 \checkmark
         If x = 3, substituting into y = x + 4
```

y = 3 + 4y = 7

CAMBRIDGE IGCSE™ AND O LEVEL ADDITIONAL MATHEMATICS: WORKED SOLUTIONS MANUAL

or substituting into $y = |x^2 - 16|$ $y = |3^2 - 16|$ $v = 7 \checkmark$ Solutions are: x = 3, y = 7 and x = -4, y = 0 and x = 5, y = 9b v = x $y = |3x - 2x^2|$ $3x - 2x^2 = x$ $3x - 2x^2 = -x$ or $2x^2 - 2x = 0$ $2x^2 - 4x = 0$ or 2x(x-1) = 02x(x-2) = 0or x = 0 or x = 1x = 0 or x = 2or If x = 0, substituting into y = xv = 0or substituting into $y = |3x - 2x^2|$ $y = |3(0) - 2(0)^2|$ $v = 0 \checkmark$ If x = 1, substituting into y = xy = 1or substituting into $y = |3x - 2x^2|$ $y = |3(1) - 2(1)^2|$ $v = 1 \checkmark$ If x = 2, substituting into y = xy = 2or substituting into $y = |3x - 2x^2|$ $y = |3(2) - 2(2)^2|$ $v = 2 \checkmark$ Solutions are: x = 0, y = 0 and x = 1, y = 1 and x = 2, y = 2y = 3xС $y = |2x^2 - 5|$ $2x^2 - 5 = 3x$ or $2x^2 - 5 = -3x$ $2x^2 - 3x - 5 = 0$ or $2x^2 + 3x - 5 = 0$ (2x-5)(x+1) = 0 or (2x+5)(x-1) = 0x = 2.5 or x = -1 or x = -2.5 or x = 1If x = 2.5, substituting into y = 3xy = 7.5

or substituting into $y = |2x^2 - 5|$ $y = |2(2.5)^2 - 5|$ $y = 7.5 \checkmark$ If x = -1, substituting into y = 3xy = -3or substituting into $y = |2x^2 - 5|$ $y = |2(-1)^2 - 5|$ y = 3 XIf x = -2.5, substituting into y = 3xv = -7.5or substituting into $y = |2x^2 - 5|$ $y = |2(-2.5)^2 - 5|$ v = 7.5 XIf x = 1, substituting into y = 3xy = 3or substituting into $y = |2x^2 - 5|$ $v = |2(1)^2 - 5|$ $v = 3 \checkmark$ Solutions are: x = 1, y = 3 and x = 2.5, y = 7.5

Exercise 1.5

Sketch the graph y = x + 1

Reflect in the *x*-axis the part of the graph that is below the *x*-axis.

Intercepts at (-1, 0) and (0, 1)