Privacy-preserving Computing

Privacy-preserving computing aims to protect the personal information of users while capitalizing on the possibilities unlocked by big data. This practical introduction for students, researchers, and industry practitioners is the first cohesive and systematic presentation of the field's advances over four decades. The book shows how to use privacy-preserving computing in real-world problems in data analytics and AI, and includes applications in statistics, database queries, and machine learning. The book begins by introducing cryptographic techniques such as secret sharing, homomorphic encryption, and oblivious transfer, and then broadens its focus to more widely applicable techniques such as differential privacy, trusted execution environment, and federated learning. The book ends with privacy-preserving computing in practice in areas like finance, online advertising, and healthcare, and finally offers a vision for the future of the field.

KAI CHEN is Professor at the Department of Computer Science and Engineering of the Hong Kong University of Science and Technology, where he leads the Intelligent Networking and Systems (iSING) Lab and the WeChat-HKUST Joint Lab on Artificial Intelligence Technology. His research interests include data center networking, high-performance networking, machine learning systems, and hardware acceleration.

QIANG YANG is Chief AI Officer at Webank and Professor Emeritus at the Department of Computer Science and Engineering of the Hong Kong University of Science and Technology. He is an AAAI, ACM, and IEEE Fellow and Fellow of the Canadian Royal Society. He has authored books such as *Intelligent Planning*, *Crafting Your Research Future*, *Transfer Learning*, and *Federated Learning*. His research interests include artificial intelligence, machine learning and data mining, automated planning, transfer learning, and federated learning.

Privacy-preserving Computing for Big Data Analytics and AI

KAI CHEN

Hong Kong University of Science and Technology

QIANG YANG WeBank and Hong Kong University of Science and Technology

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781009299510

DOI: 10.1017/9781009299534

Originally published in Chinese as "Privacy-Preserving Computing" by Publishing House of Electronics Industry in 2022

© Kai Chen and Qiang Yang 2022

First published in English by Cambridge University Press & Assessment 2024

English translation © Kai Chen and Qiang Yang 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

A catalogue record for this publication is available from the British Library

ISBN 978-1-009-29951-0 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface		
1	Introduction to Privacy-preserving Computing		1
	1.1	Definition and Background	1
	1.2	Main Technologies of Privacy-preserving Computing	9
	1.3	Privacy-preserving Computing Platforms and Cases	11
	1.4	Challenges and Opportunities in Privacy-preserving	
		Computing	12
2	Secret Sharing		13
	2.1	Problem and Definition	14
	2.2	Principle and Implementations	19
	2.3	Advantages and Disadvantages	29
	2.4	Application Scenarios	29
3	Homomorphic Encryption		36
	3.1	Definition	36
	3.2	Principle and Implementation	42
	3.3	Advantages and Disadvantages	55
	3.4	Applications	57
4	Oblivious Transfer		63
	4.1	Definition	63
	4.2	Implementation	64
	4.3	Applications	67
5	Garbled Circuit		69
	5.1	Definition	69
	5.2	Implementation	71

Cambridge University Press & Assessment
978-1-009-29951-0 — Privacy-preserving Computing
Kai Chen , Qiang Yang
Frontmatter
More Information

vi		Contents	
	5.3	Advantages and Disadvantages	77
	5.4	Applications	77
6	Differential Privacy		
	6.1	Introduction	80
	6.2	Problem Definition	82
	6.3	Mechanisms for DP	89
	6.4	Properties of DP	93
	6.5	Applications	96
	6.6	Advantages and Disadvantages	103
7	Trus	ted Execution Environment	105
	7.1	Introduction	105
	7.2	Principles and Implementations	107
	7.3	Advantages and Disadvantages of TEE	113
	7.4	Application Scenarios	116
8	Federated Learning		121
	8.1	Background, Definition, and Categorization	121
	8.2	Horizontal Federated Learning	126
	8.3	Vertical Federated Learning	134
	8.4	Federated Transfer Learning	139
	8.5	Applications of Federated Learning	144
	8.6	Future Prospectives	147
9	Privacy-preserving Computing Platforms		
	9.1	Introduction to Privacy-preserving Computing	
		Platforms	150
	9.2	FATE Secure Computing Platform	151
	9.3	CryptDB Encrypted Database System	158
	9.4	MesaTEE Secure Computing Platform (Teaclave)	164
	9.5	Conclave Query System	172
	9.6	PrivPy Privacy-preserving Computing Platform	178
	9.7	Efficiency Issues and Acceleration Strategies	184
10	Case Studies of Privacy-preserving Computing		
	10.1	Financial Marketing and Risk Control	194
	10.2	Advertising Billing	200
	10.3	Advertisement Recommendation	204
	10.4	Data Query	206
	10.5	Genetic Research	209
	10.6	Pharmaceutical Research	214

Cambridge University Press & Assessment
978-1-009-29951-0 — Privacy-preserving Computing
Kai Chen , Qiang Yang
Frontmatter
More Information

		Contents	vii
	10.7	Speech Recognition	216
	10.8	Privacy-preserving Computing in Governments	218
	10.9	User Data Statistics	226
11	Future of Privacy-preserving Computing		233
	References		238
	Index		253

Preface

We are in an era of big data where daily user activities generate huge amounts of data that fuel the advances of data-driven technologies, such as artificial intelligence (AI). However, these data inevitably contain private information of users, the disclosure of which would result in severe consequences. Therefore, how to exploit the knowledge contained within large-scale data without compromising user privacy becomes an important but challenging goal. The term *privacy-preserving computing* thus emerges as a summary of the theoretical and technical advances in pursuit of this goal.

Privacy-preserving computing is a field of rich history and fruitful achievements. Over 40 years ago, the theory of secure multiparty computation, which aims to jointly execute computing tasks while concealing partial inputs, marked the advent of privacy-preserving computing. In recent years, privacypreserving computing remains an active research topic as we witness the technology of federated learning, enabling joint training of machine learning models without disclosing private data. Over the decades, privacy-preserving computing has grown into an inclusive and fruitful field, comprising secret sharing (SS), garbled circuits (GC), oblivious transfer (OT), differential privacy (DP), homomorphic encryption (HE), trusted execution environment (TEE), and federated learning (FL). In addition, with its applications in real-world tasks (such as database queries, data analytics, and machine learning) and scenarios (such as finance and health care), privacy-preserving computing is also a versatile subject that contributes to social well-being.

Despite the success and advances of privacy-preserving computing, we note that a comprehensive book that systematically describes the field is still absent. In fact, existing advances in privacy-preserving computing are still scattered in journal papers, technical talks, blogs, tutorials, and other publications without a unified and comprehensive taxonomy to summarize them. Consequently, the

Х

Preface

authors believe that the lack of a unified and systematic introduction hampers the development and application of privacy-preserving computing, as illustrated by the following examples:

- We gave a presentation entitled "Privacy-Preserving Computing: Theory and Efficiency" during a seminar organized by the China Computer Federation (CCF), where the audience mainly consisted of interested professors and students from universities in China. The presentation was a great success, and from the many questions received from the audience, we observed that despite their interests in privacy-preserving computing, their understanding of the topic was still vague and fragmented. Specifically, they were rather unclear about the scope, categorization, and detailed techniques in privacy-preserving computing that covers a wide range of privacy-preserving computing techniques would be helpful to students and researchers.
- We often met with organizations who were passionate about privacypreserving computing but were not equipped with sufficient knowledge. A typical example would be the Hong Kong Science and Technology Park (HKSTP). As hundreds of sci-tech companies are located in HKSTP, it has the motivation to create a better environment for innovative startups. However, corporate data generally contains sensitive information about the companies and is thus not easily accessible. Therefore, we extensively discussed with HKSTP the concepts, techniques, and practical issues of federated learning. We believe that the interests in federated learning and other privacy-preserving computing techniques are general, and that a book that covers practical aspects and case studies of privacy-preserving computing would be helpful to industrial practitioners.

Motivated by our observations, we wrote this book on privacy-preserving computing in an attempt to build a unified taxonomy on privacy-preserving computing and also to guide its practical real-world applications. The whole process of writing the book lasted for over a year and involved the efforts of many students from the HKUST Intelligent Systems and Networking (iSING) Lab. We read and summarized many research papers, including some of our own, trying to introduce the fundamental techniques, case studies, and large-scale platforms of privacy-preserving computing in plain and comprehensible language. We finally envisioned the future directions and challenges of privacy-preserving computing.

To summarize, we hope that with this book on privacy-preserving computing we can build a unified and comprehensive taxonomy and overview of the

Preface

field. Meanwhile, we are also aware that this book is still far from being an encyclopedia, in that it cannot cover every aspect of privacy-preserving computing. Nonetheless, we still hope that our efforts can mark the first step toward this goal and motivate future researchers to make new contributions.

Summary of Contents

The contents of this book can be divided into three parts:

- (i) Encrypted computation (Chapters 2–5). This part of the book aims to introduce cryptographic techniques to achieve privacy-preserving computing, including secret sharing (SS), homomorphic encryption (HE), oblivious transfer (OT), and garbled circuits (GC). These cryptographic techniques serve as foundations of many privacy-preserving computing protocols and applications. In each chapter, we cover basic knowledge about the cryptographic technique and some practical examples of applications.
- (ii) Privacy-preserving computation (Chapters 6–8). This part of the book aims to introduce noncryptographic techniques to achieve privacypreserving computing, including differential privacy (DP), trusted execution environment (TEE), and federated learning (FL). These techniques focus on protecting data privacy in a more diverse range of application scenarios.
- (iii) Privacy-preserving computing platforms and case studies (Chapters 9– 10). This part of the book aims to show how the introduced techniques are successfully applied in practice and on a large scale. Chapter 9 introduces the federated learning platform, FATE, as well as some platforms for encrypted databases. It also covers the efficiency problem in realworld privacy-preserving computing platforms and potential solutions. Chapter 10 introduces some case studies where privacy-preserving computing techniques are applied, including finance, risk management, online advertising, database queries, health care, and public services.

Acknowledgments

First, we would like to express our gratitude toward a group of outstanding Ph.D. students, researchers, and engineers who have dedicated huge amounts of effort to this book, including (in alphabetical order)

xi

xii

Preface

- Di Chai, who contributed to the writing of Chapters 2 and 10.
- Tianjian Chen, who contributed to the writing of Chapter 10.
- Xiaodian Cheng, who contributed to the writing of Chapter 9.
- Kun Guo, who contributed to the writing of Chapter 10.
- Shuihai Hu, who contributed to the writing of Chapter 9.
- Yilun Jin, who contributed to the writing of Chapters 3, 4, 5, 6, and 10.
- Zhenghang Ren, who contributed to the writing of Chapters 4, 5, 7, 8, and 10.
- Han Tian, who contributed to the writing of Chapters 3, 6, and 10.
- Liu Yang, who contributed to the writing of Chapters 2 and 10.
- Junxue Zhang, who contributed to the writing of Chapter 7.

During the preparation of this book, we consulted over 200 related books, articles, and research papers. We would also like to thank the authors of these works for their contributions to the field of privacy-preserving computing.

Finally, we would like to thank our families for their understanding and continued support. Without them, the book would not have been possible.