Cambridge University Press & Assessment 978-1-009-29375-4 — Cambridge IGCSE[™] and O Level Additional Mathematics Practice Book with Digital Version (2 Years' Access) 3rd Edition Muriel James Excerpt

More Information

> Chapter 1: Functions

LEARNING INTENTIONS

This section will show you how to

- understand and use the terms: function, domain, range (image set), one-one function, inverse function and composition of functions
- use the notation $f(x) = 2x^3 + 5$, $f: x \mapsto 5x 3$, $f^{-1}(x)$ and $f^{2}(x)$
- understand the relationship between y = f(x) and y = |f(x)|
- solve graphically or algebraically equations of the type |ax + b| = c and |ax + b| = cx + d
- explain in words why a given function is a function or why it does not have an inverse
- find the inverse of a one-one function and form composite functions
- sketch graphs to show the relationship between a function and its inverse.

1.1 Mappings

REMINDER

The table below shows one-one, many-one and one-many mappings.

Exercise 1.1

Determine whether each of these mappings is one-one, many-one or one-many.

1	$x \mapsto 2x + 3$	$x \in \mathbb{R}$	2	$x \mapsto x^2 + 4$	$x \in \mathbb{R}$
3	$x \mapsto 2x^3$	$x \in \mathbb{R}$	4	$x \mapsto 3^x$	$x \in \mathbb{R}$
5	$x \mapsto \frac{-1}{x}$	$x \in \mathbb{R}, x > 0$	6	$x \mapsto x^2 + 1$	$x \in \mathbb{R}, x \ge 0$
7	$x \mapsto \frac{2}{x}$	$x \in \mathbb{R}, x > 0$	8	$x \mapsto \pm \sqrt{x}$	$x \in \mathbb{R}, x > 0$

1 >

Cambridge University Press & Assessment 978-1-009-29375-4 — Cambridge IGCSE[™] and O Level Additional Mathematics Practice Book with Digital Version (2 Years' Access) 3rd Edition Muriel James Excerpt <u>More Information</u>

CAMBRIDGE IGCSE™ ADDITIONAL MATHEMATICS: PRACTICE BOOK

1.2 Definition of a function

REMINDER

A **function** is a rule that maps each *x* value to just one *y* value for a defined set of input values.

This means that mappings that are either $\begin{cases} one-one \\ many-one \end{cases}$ are called functions.

The mapping $x \mapsto x + 1$, where $x \in \mathbb{R}$, is a **one-one function**.

The function can be defined as $f: x \mapsto x + 1$, $x \in \mathbb{R}$ or f(x) = x + 1, $x \in \mathbb{R}$.

The set of input values for a function is called the **domain** of the function.

The set of output values for a function is called the **range** (or image set) of the function.

WORKED EXAMPLE 1

The function f is defined by $f(x) = (x - 1)^2 + 4$, for $0 \le x \le 5$. Find the range of f.

Answers

 $f(x) = (x - 1)^2 + 4$ is a positive quadratic function so the graph will be of the form

 $(x-1)^2 + 4$

This part of the expression is a square so it will always be ≥ 0 . The smallest value it can be is 0. This occurs when x = 1.

The minimum value of the expression is 0 + 4 = 4 and this minimum occurs when x = 1.

So the function $f(x) = (x - 1)^2 + 4$ will have a minimum at the point (1, 4). When x = 0, $y = (0 - 1)^2 + 4 = 5$. When x = 5, $y = (5 - 1)^2 + 4 = 20$. The range is $1 \le f(x) \le 20$.

Exercise 1.2

- 1 Which of the mappings in **Exercise 1.1** are functions?
- 2 Find the range for each of these functions.

а	$\mathbf{f}(x) = x - 9,$	$-2 \le x \le 8$	b	$\mathbf{f}(x) = 2x - 2,$	$0 \le x \le 6$
с	$\mathbf{f}(x) = 7 - 2x,$	$-3 \le x \le 5$	d	$f(x) = 2x^2,$	$-4 \le x \le 3$
е	$\mathbf{f}(x) = 3^x,$	$-4 \le x \le 3$	f	$f(x) = \frac{-1}{x},$	$1 \le x \le 6$

Cambridge University Press & Assessment 978-1-009-29375-4 — Cambridge IGCSE[™] and O Level Additional Mathematics Practice Book with Digital Version (2 Years' Access) 3rd Edition Muriel James Excerpt <u>More Information</u>

Chapter 1: Functions

- 3 The function g is defined as $g(x) = x^2 5$ for $x \ge 0$. Find the range of g.
- 4 The function f is defined by $f(x) = 4 x^2$ for $x \in \mathbb{R}$. Find the range of f.
- 5 The function f is defined by $f(x) = 3 (x 1)^2$ for $x \ge 1$. Find the range of f.
- 6 The function f is defined by $f(x) = (4x + 1)^2 2$ for $x \ge -\frac{1}{4}$. Find the range of f.
- 7 The function f is defined by $f: x \mapsto 8 (x 3)^2$ for $2 \le x \le 7$. Find the range of f.
- 8 The function f is defined by $f(x) = 3 \sqrt{x-1}$ for $x \ge 1$. Find the range of f.
- 9 Find the largest possible domain for the following functions.

а	$f(x) = \frac{1}{x+3}$	b	$f(x) = \frac{3}{x-2}$	С	$f(x) = \frac{4}{(x-3)(x+2)}$
d	$f(x) = \frac{1}{x^2 - 4}$	е	$f: x \mapsto \sqrt{x^3 - 4}$	f	$f: x \mapsto \sqrt{x+5}$
g	$g: x \mapsto \frac{1}{\sqrt{x-2}}$	h	$f: x \mapsto \frac{x}{\sqrt{3-3x}}$	i	$f: x \mapsto 1 - x^2$

1.3 Composite functions

REMINDER

- When one function is followed by another function, the resulting function is called a **composite function**.
- fg(x) means the function g acts on x first, then f acts on the result.
- $f^{2}(x)$ means ff(x), so you apply the function f twice.

WORKED EXAMPLE 2

```
f: x \mapsto 4x + 3, for x \in \mathbb{R}
g: x \mapsto 2x^2 - 5, for x \in \mathbb{R}
Find fg(3).
Answers
fg(3) = f(2 × 3<sup>2</sup> - 5) g acts on 3 first and g(3) = 2 × 3<sup>2</sup> - 5 = 13.
= f(13)
= 4 × 13 + 3
= 55
```

Cambridge University Press & Assessment 978-1-009-29375-4 — Cambridge IGCSE[™] and O Level Additional Mathematics Practice Book with Digital Version (2 Years' Access) 3rd Edition Muriel James Excerpt <u>More Information</u>

CAMBRIDGE IGCSE™ ADDITIONAL MATHEMATICS: PRACTICE BOOK

WORKED EXAMPLE 3	
$g(x) = 2x^2 - 2$, for $x \in \mathbb{R}$ $h(x) = 4 - 3x$, for $x \in \mathbb{R}$ Solve the equation $hg(x) =$	-14.
Answers	
$hg(x) = h(2x^{2} - 2)$ = 4 - 3(2x^{2} - 2) = 4 - 6x^{2} + 6 = 10 - 6x^{2}	g acts on x first and $g(x) = 2x^2 - 2$. h is the function 'triple and take from 4' expand the brackets
$hg(x) = -14-14 = 10 - 6x^{2}24 = 6x^{2}4 = x^{2}x = \pm 2$	set up and solve the equation

Exercise 1.3

- 1 $f(x) = 2 x^2$, for $x \in \mathbb{R}$ $g(x) = \frac{x}{2} + 3$, for $x \in \mathbb{R}$ Find the value of gf(4).
- 2 $f(x) = (x 2)^2 2$, for $x \in \mathbb{R}$ Find $f^2(3)$.
- 3 The function f is defined by $f(x) = 1 + \sqrt{x-3}$, for $x \ge 3$. The function g is defined by $g(x) = \frac{-3}{x} - 1$, for x > 0. Find gf(7).
- 4 The function f is defined by $f(x) = (x 2)^2 + 3$, for x > -2. The function g is defined by $g(x) = \frac{3x + 4}{x + 2}$, for x > 2. Find fg(6).
- 5 $f: x \mapsto 3x 1$, for x > 0 $g: x \mapsto \sqrt{x}$, for x > 0Express each of the following in terms of f and g.
 - **a** $x \mapsto 3\sqrt{x} 1$ **b** $x \mapsto \sqrt{3x 1}$
- 6 The function f is defined by f: x → 2x 1, for x ∈ ℝ.
 The function g is defined by g: x → ⁸/_{4-x}, for x ≠ 4.
 Solve the equation gf(x) = 5.

Cambridge University Press & Assessment 978-1-009-29375-4 — Cambridge IGCSE[™] and O Level Additional Mathematics Practice Book with Digital Version (2 Years' Access) 3rd Edition Muriel James Excerpt <u>More Information</u>

Chapter 1: Functions

- 7 $f(x) = 2x^2 + 3$, for x > 0 $g(x) = \frac{5}{x}$, for x > 0Solve the equation fg(x) = 4.
- 8 The function f is defined by $f: x \mapsto \frac{2x-1}{x-3}$, for $x \in \mathbb{R}$, $x \neq 3$. The function g is defined by $g: x \mapsto \frac{x+1}{2}$, for $x \in \mathbb{R}$, $x \neq 1$. Solve the equation fg(x) = 4.
- 9 The function g is defined by g(x) = 1 2x² for x ≥ 0.
 The function h is defined by h(x) = 3x 1 for x ≥ 0.
 Solve the equation gh(x) = -3, giving your answer(s) as exact value(s).
- 10 The function f is defined by f:x → x², for x ∈ ℝ. The function g is defined by g: x → x + 2, for x ∈ ℝ. Express each of the following as a composite function, using only f and g.
 a x → (x + 2)² b x → x² + 2 c x → x + 4 d x → x⁴
- 11 The functions f and g are defined by $f: x \mapsto x + 3$ and $g: x \mapsto \sqrt{x}$, for x > 0. Express in terms of f and g.
 - **a** $x \mapsto \sqrt{x+3}$ **b** $x \mapsto x+6$ **c** $x \mapsto \sqrt{x}+3$
- **12** Functions f and g are defined as $f(x) = \sqrt{x}$ and $g(x) = \frac{x-5}{2x+1}$
 - a Find the largest possible domain of g and the corresponding range.
 - **b** Solve the equation g(x) = 0.
 - **c** Find the domain and range of fg.

1.4 Modulus functions

REMINDER

- The **modulus** (or **absolute value**) of a number is the magnitude of the number without a sign attached.
- The modulus of x, written as |x|, is defined as

$$|x| = \begin{cases} x & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -x & \text{if } x < 0 \end{cases}$$

• The statement |x| = k, where $k \ge 0$, means that x = k or x = -k.

TIP

Before writing your final answers, compare your solutions with the domains of the original functions.

Cambridge University Press & Assessment 978-1-009-29375-4 — Cambridge IGCSE[™] and O Level Additional Mathematics Practice Book with Digital Version (2 Years' Access) 3rd Edition Muriel James Excerpt <u>More Information</u>

CAMBRIDGE IGCSE™ ADDITIONAL MATHEMATICS: PRACTICE BOOK

W	WORKED EXAMPLE 4				
Sol	olve.				
а	4x + 3 = x + 18	b $ 2x^2 - 7 = 9$			
An	nswers				
а	4x + 3 = x + 18				
	$4x + 3 = x + 18 \qquad 4x + 3 = -x - 18$				
	3x = 15 or $5x = -21$				
	$x = 5 \qquad \qquad x = -\frac{21}{5}$				
	Solution is: $x = 5$ or $-\frac{21}{5}$				
b	$ 2x^2 - 7 = 9$				
	$2x^2 - 7 = 9$ or $2x^2 - 7 = -9$				
	$2x^2 = 16$ $2x^2 = -2$				
	$x^2 = 8 \qquad \qquad x^2 = -1$	no real solution			
	$x = \pm 2\sqrt{2}$				
	Solution is: $x = \pm 2\sqrt{2}$				

Exercise 1.4

1 Solve.

а	2x - 1 = 11	b	2x + 4 = 8	С	6-3x =4
d	$\left \frac{x-2}{5}\right = 6$	е	$\left \frac{3x+4}{3}\right = 4$	f	$\left \frac{9-2x}{3}\right = 4$
g	$\left \frac{x}{3} - 6\right = 1$	h	$\left \frac{2x+5}{3} + \frac{2x}{5}\right = 3$	i	2x-6 = x

2 Solve.

а	$\left \frac{2x-5}{x+4}\right = 3$	b	$\left \frac{4x+2}{x+3}\right = 3$	с	$\left 1 + \frac{2x+5}{x+3}\right = 4$
d	2x - 3 = 3x	е	2x + 3x - 4 = 5	f	7 - 1 - 2x = 3x

3 Solve, giving your answers as exact values if appropriate.

a
$$|x^2 - 4| = 5$$

b $|x^2 + 5| = 11$
c $|9 - x^2| = 3 - x$
d $|x^2 - 3x| = 2x$
e $|x^2 - 16| = 2x + 1$
f $|2x^2 - 1| = x + 2$
g $|3 - 2x^2| = x$
h $|x^2 - 4x| = 3 - 2x$
i $|2x^2 - 2x + 5| = 1 - x$

4 Solve each pair of simultaneous equations.

a
$$y = x + 4$$

 $y = |x^2 - 2|$
b $y = 1 - x$
 $y = |4x^2 - 4x|$

TIP

Remember to check your answers to make sure that they satisfy the original equation.

6 >

Cambridge University Press & Assessment 978-1-009-29375-4 — Cambridge IGCSE[™] and O Level Additional Mathematics Practice Book with Digital Version (2 Years' Access) 3rd Edition Muriel James Excerpt <u>More Information</u>

Chapter 1: Functions

1.5 Graphs of y = |f(x)| where f(x) is linear

Exercise 1.5

1 Sketch the graphs of each of the following functions, showing the coordinates of the points where the graph meets the axes.

a
$$y = |x - 2|$$

b $y = |3x - 3|$
c $y = |3 - x|$
d $y = \left|\frac{1}{3}x - 3\right|$
e $y = |6 - 3x|$
f $y = \left|5 - \frac{1}{2}x\right|$

2 a Complete the table of values for y = 3 - |x - 1|.

x	-2	-1	0	1	2	3	4
у		1		3			

b Draw the graph of y = 3 - |x - 1|, for $-2 \le x \le 4$.

3 Draw the graphs of each of the following functions.

a
$$y = |2x| + 2$$

b $y = |x| - 2$
c $y = 4 - |3x|$
d $y = |x - 1| + 3$
e $y = |3x - 6| - 2$
f $y = 4 - \left\lfloor \frac{1}{2}x \right\rfloor$

4 Given that each of these functions is defined for the domain $-3 \le x \le 4$, find the range of

a
$$f: x \mapsto 6 - 3x$$
 b $g: x \mapsto |6 - 3x|$ **c** $h: x \mapsto 6 - |3x|$

5 Find the range of each function for $-1 \le x \le 5$.

- **a** $f: x \mapsto 2 2x$ **b** $g: x \mapsto |2 2x|$ **c** $h: x \mapsto 2 |2x|$
- 6 a Sketch the graph of y = |3x 2| for -4 < x < 4, showing the coordinates of the points where the graph meets the axes.
 - **b** On the same diagram, sketch the graph of y = x + 3.
 - **c** Solve the equation |3x 2| = x + 3.
- 7 A function f is defined by f(x) = 2 |3x 1|, for $-1 \le x \le 3$.
 - **a** Sketch the graph of y = f(x).
 - **b** State the range of f.
 - **c** Solve the equation f(x) = -2.
- 8 a On a single diagram, sketch the graphs of x + 3y = 6 and y = |x + 2|.
 - **b** Solve the inequality $|x + 2| < \frac{1}{3}(6 x)$.

More Information

Cambridge University Press & Assessment 978-1-009-29375-4 — Cambridge IGCSE[™] and O Level Additional Mathematics Practice Book with Digital Version (2 Years' Access) 3rd Edition Muriel James Excerpt

CAMBRIDGE IGCSETM ADDITIONAL MATHEMATICS: PRACTICE BOOK

1.6 Inverse functions

REMINDER

- The inverse of the function f(x) is written as $f^{-1}(x)$.
- The domain of $f^{-1}(x)$ is the range of f(x).
- The range of $f^{-1}(x)$ is the domain of f(x).
- It is important to remember that not every function has an inverse.
- An inverse function $f^{-1}(x)$ can exist if, and only if, the function f(x) is a one-one mapping.

WORKED EXAMPLE 5

 $f(x) = (x + 3)^2 - 1$, for x > -3

- **a** Find an expression for $f^{-1}(x)$.
- **b** Solve the equation $f^{-1}(x) = 3$.

Answers

а	$\mathbf{f}(x) = (x$	$(+3)^2 - 1$, for $x > -3$	
	St	Write the function as $y = \dots$	$y = (x+3)^2 - 1$
	St	Interchange the <i>x</i> and <i>y</i> variables.	$x = (y+3)^2 - 1$
	St	Rearrange to make <i>y</i> the subject.	$x+1 = (y+3)^2$
			$\sqrt{x+1} = y+3$
			$y = \sqrt{x+1} - 3$
	$f^{-1}(x) = -$	$\sqrt{x+1}-3$	
b	$f^{-1}(x) = 1$	3.	
	$\sqrt{x+1}$ –	3 = 3	
	\sqrt{x} +	$\overline{1} = 6$	
	<i>x</i> +	1 = 36	
		<i>x</i> = 35	

Exercise 1.6

- 1 $f(x) = (x + 2)^2 3$, for $x \ge -2$. Find an expression for $f^{-1}(x)$.
- 2 $f(x) = \frac{5}{x-2}$, for $x \ge 0$. Find an expression for $f^{-1}(x)$.
- 3 $f(x) = (3x 2)^2 + 3$, for $x \ge \frac{2}{3}$. Find an expression for $f^{-1}(x)$.

Cambridge University Press & Assessment 978-1-009-29375-4 — Cambridge IGCSE[™] and O Level Additional Mathematics Practice Book with Digital Version (2 Years' Access) 3rd Edition Muriel James Excerpt <u>More Information</u>

Chapter 1: Functions

- 4 $f(x) = 4 \sqrt{x-2}$, for $x \ge 2$. Find an expression for $f^{-1}(x)$.
- 5 $f: x \mapsto 3x 4$, for x > 0. $g: x \mapsto \frac{4}{4 - x}$, for $x \neq 4$.

Express $f^{-1}(x)$ and $g^{-1}(x)$ in terms of x.

6
$$f(x) = (x-2)^2 + 3$$
, for $x > 2$.

a Find an expression for $f^{-1}(x)$. **b** Solve the equation $f^{-1}(x) = f(4)$.

7
$$g(x) = \frac{3x+1}{x-3}$$
, for $x > 3$

- a Find an expression for $g^{-1}(x)$ and comment on your result.
- **b** Solve the equation $g^{-1}(x) = 6$.

8
$$f(x) = \frac{x}{2} - 2$$
, for $x \in \mathbb{R}$ $g(x) = x^2 - 4x$, for $x \in \mathbb{R}$

a Find
$$f^{-1}(x)$$
.

b Solve $fg(x) = f^{-1}(x)$, leaving answers as exact values.

9
$$f: x \mapsto \frac{3x+1}{x-1}$$
, for $x \neq 1$ $g: x \mapsto \frac{x-2}{3}$, for $x > -2$

Solve the equation $f(x) = g^{-1}(x)$.

- 10 If $f(x) = \frac{x^2 9}{x^2 + 4}$, $x \in \mathbb{R}$, find an expression for $f^{-1}(x)$.
- **11** If $f(x) = 2\sqrt{x}$ and g(x) = 5x, solve the equation $f^{-1}g(x) = 0.01$.
- 12 Find the value of the constant k such that $f(x) = \frac{2x-4}{x+k}$ is a self-inverse function.
- **13** The function f is defined by $f(x) = x^3$. Find an expression for g(x) in terms of x for each of the following.
 - **a** fg(x) = 3x + 2 **b** gf(x) = 3x + 2

14 Given that f(x) = 2x + 1 and $g(x) = \frac{x+1}{2}$, find the following.

a
$$f^{-1}$$
 b g^{-1} **c** $(fg)^{-1}$ **d** $(gf)^{-1}$ **e** $f^{-1}g^{-1}$ **f** $g^{-1}f^{-1}$

Write down any observations from your results.

15 Given that
$$fg(x) = \frac{x+2}{3}$$
 and $g(x) = 2x + 5$, find $f(x)$.

16 Functions f and g are defined for all real numbers. $g(x) = x^2 + 7$ and $gf(x) = 9x^2 + 6x + 8$. Find f(x). TIP

A self-inverse function is one for which $f(x) = f^{-1}(x)$, for all values of x in the domain.

Cambridge University Press & Assessment 978-1-009-29375-4 — Cambridge IGCSE[™] and O Level Additional Mathematics Practice Book with Digital Version (2 Years' Access) 3rd Edition Muriel James Excerpt <u>More Information</u>

CAMBRIDGE IGCSE™ ADDITIONAL MATHEMATICS: PRACTICE BOOK

1.7 The graph of a function and its inverse

REMINDER

The graphs of f and f^{-1} are reflections of each other in the line y = x. This is true for all one-one functions and their inverse functions.

This is because: $ff^{-1}(x) = x = f^{-1}f(x)$

Some functions are called **self-inverse functions** because f and its inverse f^{-1} are the same.

If $f(x) = \frac{1}{x}$, for $x \neq 0$, then $f^{-1}(x) = \frac{1}{x}$, for $x \neq 0$.

So $f(x) = \frac{1}{x}$, for $x \neq 0$, is an example of a self-inverse function.

When a function f is self-inverse, the graph of f will be symmetrical about the line y = x.

Exercise 1.7

1 On a copy of the grid, draw the graph of the inverse of the function $y = 2^{-x}$.

2
$$f(x) = x^2 + 5, x \ge 0.$$

On the same axes, sketch the graphs of y = f(x) and $y = f^{-1}(x)$, showing the coordinates of any points where the curves meet the coordinate axes.

3 $g(x) = \frac{1}{2}x^2 - 4$, for $x \ge 0$.

Sketch, on a single diagram, the graphs of y = g(x) and $y = g^{-1}(x)$, showing the coordinates of any points where the curves meet the coordinate axes.