Contents

Acronyms ix
Preface xiii

1 Introduction 1
1.1 Historical background 1
1.2 Gaseous detectors: a personal recollection 4
1.3 Basic processes in gaseous counters 20
1.4 Outline of the book 23

2 Electromagnetic interactions of charged particles with matter 24
2.1 Generalities on the energy loss process 24
2.2 The Bethe–Bloch energy loss expression 28
2.3 Energy loss statistics 29
2.4 Delta electron range 40

3 Interaction of photons and neutrons with matter 43
3.1 Photon absorption and emission in gases 43
3.2 Photon absorption: definitions and units 44
3.3 Photon absorption processes: generalities 46
3.4 Photon absorption in gases: from the visible to the near ultra-violet domain 49
3.5 Photo-ionization: near and vacuum ultra-violet 53
3.6 Photo-ionization in the X-ray region 56
3.7 Compton scattering and pair production 62
3.8 Use of converters for hard photons detection 63
3.9 Transparency of windows 67
3.10 Detection of neutrons 68

4 Drift and diffusion of charges in gases 76
4.1 Generalities 76
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2 Experimental methods</td>
<td>76</td>
</tr>
<tr>
<td>4.3 Thermal diffusion of ions</td>
<td>80</td>
</tr>
<tr>
<td>4.4 Ion mobility and diffusion in an electric field</td>
<td>82</td>
</tr>
<tr>
<td>4.5 Classic theory of electron drift and diffusion</td>
<td>87</td>
</tr>
<tr>
<td>4.6 Electron drift in magnetic fields</td>
<td>90</td>
</tr>
<tr>
<td>4.7 Electron drift velocity and diffusion: experimental</td>
<td>91</td>
</tr>
<tr>
<td>4.8 Electron capture</td>
<td>106</td>
</tr>
<tr>
<td>4.9 Electron drift in liquid noble gases</td>
<td>112</td>
</tr>
<tr>
<td>4.10 Transport theory</td>
<td>114</td>
</tr>
<tr>
<td>5 Collisional excitations and charge multiplication in uniform fields</td>
<td>129</td>
</tr>
<tr>
<td>5.1 Inelastic electron–molecule collisions</td>
<td>129</td>
</tr>
<tr>
<td>5.2 Excitations and photon emission</td>
<td>130</td>
</tr>
<tr>
<td>5.3 Ionization and charge multiplication</td>
<td>143</td>
</tr>
<tr>
<td>5.4 Avalanche statistics</td>
<td>149</td>
</tr>
<tr>
<td>5.5 Streamer formation and breakdown</td>
<td>153</td>
</tr>
<tr>
<td>6 Parallel plate counters</td>
<td>160</td>
</tr>
<tr>
<td>6.1 Charge induction on conductors</td>
<td>160</td>
</tr>
<tr>
<td>6.2 Signals induced by the motion of charges in uniform fields</td>
<td>161</td>
</tr>
<tr>
<td>6.3 Analytical calculation of charge induction</td>
<td>165</td>
</tr>
<tr>
<td>6.4 Signals induced by the avalanche process</td>
<td>172</td>
</tr>
<tr>
<td>6.5 Grid transparency</td>
<td>175</td>
</tr>
<tr>
<td>6.6 Applications of parallel plate avalanche counters (PPACs)</td>
<td>177</td>
</tr>
<tr>
<td>7 Proportional counters</td>
<td>182</td>
</tr>
<tr>
<td>7.1 Basic principles</td>
<td>182</td>
</tr>
<tr>
<td>7.2 Absolute gain measurement</td>
<td>188</td>
</tr>
<tr>
<td>7.3 Time development of the signal</td>
<td>188</td>
</tr>
<tr>
<td>7.4 Choice of the gas filling</td>
<td>191</td>
</tr>
<tr>
<td>7.5 Energy resolution</td>
<td>194</td>
</tr>
<tr>
<td>7.6 Scintillation proportional counters</td>
<td>198</td>
</tr>
<tr>
<td>7.7 Space-charge gain shifts</td>
<td>201</td>
</tr>
<tr>
<td>7.8 Geiger and self-quenching streamer operation</td>
<td>206</td>
</tr>
<tr>
<td>7.9 Radiation damage and detector ageing</td>
<td>207</td>
</tr>
<tr>
<td>8 Multi-wire proportional chambers</td>
<td>211</td>
</tr>
<tr>
<td>8.1 Principles of operation</td>
<td>211</td>
</tr>
<tr>
<td>8.2 Choice of geometrical parameters</td>
<td>215</td>
</tr>
<tr>
<td>8.3 Influence on gain of mechanical tolerances</td>
<td>216</td>
</tr>
<tr>
<td>8.4 Electrostatic forces and wire stability</td>
<td>218</td>
</tr>
</tbody>
</table>
8.5 General operational characteristics: proportional and semi-proportional 221
8.6 Saturated amplification region: Charpak’s ‘magic gas’ 226
8.7 Limited streamer and full Geiger operation 230
8.8 Discharges and breakdown: the Raether limit 231
8.9 Cathode induced signals 234
8.10 The multi-step chamber (MSC) 245
8.11 Space charge and rate effects 249
8.12 Mechanical construction of MWPCs 252

9 Drift chambers 264
9.1 Single wire drift chambers 264
9.2 Multi-cell planar drift chambers 265
9.3 Volume multi-wire drift chambers 275
9.4 Jet chambers 280
9.5 Time expansion chamber 282
9.6 Determination of the longitudinal coordinate from current division 284
9.7 Electrodeless drift chambers 287
9.8 General operating considerations 290
9.9 Drift chamber construction 290

10 Time projection chambers 292
10.1 Introduction: the precursors 292
10.2 Principles of operation 293
10.3 TPC-based experiments 297
10.4 Signal induction: the pad response function 301
10.5 Choice of the gas filling 312
10.6 Coordinate in the drift direction and multi-track resolution 315
10.7 Positive ion backflow and gating 318
10.8 TPC calibration 323
10.9 Liquid noble gas TPC 324
10.10 Negative ion TPC 325

11 Multi-tube arrays 327
11.1 Limited streamer tubes 327
11.2 Drift tubes 329
11.3 Straw tubes 335
11.4 Mechanical construction and electrostatic stability 340

12 Resistive plate chambers 344
12.1 Spark counters 344
Contents

12.2 Resistive plate counters (RPCs) 346
12.3 Glass RPCs 353
12.4 Multi-gap RPCs 355
12.5 Simulations of RPC operation 360

13 Micro-pattern gaseous detectors 365
13.1 The micro-strip gas counter 365
13.2 Novel micro-pattern devices 373
13.3 Micro-mesh gaseous structure (Micromegas) 378
13.4 Gas electron multiplier (GEM) 383
13.5 MPGD readout of time projection chambers 392
13.6 Active pixel readout 395
13.7 MPGD applications 398

14 Cherenkov ring imaging 399
14.1 Introduction 399
14.2 Recalls of Cherenkov ring imaging theory 403
14.3 First generation RICH detectors 407
14.4 TMAE and the second generation of RICH detectors 410
14.5 Third generation RICH: solid caesium iodide (CsI) photocathodes 417
14.6 CsI-based RICH particle identifiers 423
14.7 Micro-pattern based RICH detectors 424

15 Miscellaneous detectors and applications 430
15.1 Optical imaging chambers 430
15.2 Cryogenic and dual-phase detectors 434

16 Time degeneracy and ageing 441
16.1 Early observations 441
16.2 Phenomenology of the radiation damages 443
16.3 Quantitative assessment of the ageing rates 449
16.4 Methods of preventing or slowing down the ageing process 451
16.5 Ageing of resistive plate chambers 455
16.6 Micro-pattern detectors 457

Further reading on radiation detectors 460
References 461
Index 494