Cambridge University Press & Assessment 978-1-009-29118-7 — Gaseous Radiation Detectors Fabio Sauli Frontmatter More Information

GASEOUS RADIATION DETECTORS

Widely used in high-energy and particle physics, gaseous radiation detectors are undergoing continuous development. The first part of this book provides a solid background for understanding the basic processes leading to the detection and tracking of charged particles, photons, and neutrons.

Continuing then with the development of the multi-wire proportional chamber, the book describes the design and operation of successive generations of gasbased radiation detectors, as well as their use in experimental physics and other fields. Examples are provided of applications for complex event tracking, particle identification, and neutral radiation imaging. Limitations of the devices are discussed in detail.

Including an extensive collection of data and references, this book is ideal for researchers and experimentalists in nuclear and particle physics.

This title, first published in 2015, has been reissued as an Open Access publication on Cambridge Core.

FABIO SAULI is Research Associate for the Italian TERA Foundation, responsible for the development of medical diagnostic instrumentation for hadrontherapy. Prior to this, he was part of the Research Staff at CERN in the Gas Detectors Development group, initiated by Georges Charpak, before leading the group from 1989 until his retirement in 2006. He has more than 200 scientific publications, and is an editor of several books on instrumentation in high energy physics. His achievements include inventing the Gas Electron Multiplier (GEM), which is widely used in advanced detectors.

Cambridge University Press & Assessment 978-1-009-29118-7 — Gaseous Radiation Detectors Fabio Sauli Frontmatter More Information

CAMBRIDGE MONOGRAPHS ON PARTICLE PHYSICS, NUCLEAR PHYSICS AND COSMOLOGY

General Editors: T. Ericson, P. V. Landshoff

- 1. K. Winter (ed.): Neutrino Physics
- 2. J. F. Donoghue, E. Golowich and B. R. Holstein: Dynamics of the Standard Model
- 3. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 1: Electroweak Interactions, the 'New Particles' and the Parton Model
- 4. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 2: CP-Violation, QCD and Hard Processes
- 5. C. Grupen: Particle Detectors
- 6. H. Grosse and A. Martin: Particle Physics and the Schrödinger Equation
- 7. B. Andersson: The Lund Model
- 8. R. K. Ellis, W. J. Stirling and B. R. Webber: QCD and Collider Physics
- 9. I. I. Bigi and A. I. Sanda: CP Violation
- 10. A. V. Manohar and M. B. Wise: Heavy Quark Physics
- 11. R. Frühwirth, M. Regler, R. K. Bock, H. Grote and D. Notz: *Data Analysis Techniques for High-Energy Physics, Second edition*
- 12. D. Green: The Physics of Particle Detectors
- 13. V. N. Gribov and J. Nyiri: Quantum Electrodynamics
- 14. K. Winter (ed.): Neutrino Physics, Second edition
- 15. E. Leader: Spin in Particle Physics
- 16. J. D. Walecka: Electron Scattering for Nuclear and Nucleon Structure
- 17. S. Narison: QCD as a Theory of Hadrons
- 18. J. F. Letessier and J. Rafelski: Hadrons and Quark-Gluon Plasma
- 19. A. Donnachie, H. G. Dosch, P. V. Landshoff and O. Nachtmann: Pomeron Physics and QCD
- 20. A. Hofmann: The Physics of Synchrotron Radiation
- 21. J. B. Kogut and M. A. Stephanov: The Phases of Quantum Chromodynamics
- 22. D. Green: High P_T Physics at Hadron Colliders
- 23. K. Yagi, T. Hatsuda and Y. Miake: Quark-Gluon Plasma
- 24. D. M. Brink and R. A. Broglia: Nuclear Superfluidity
- 25. F. E. Close, A. Donnachie and G. Shaw: Electromagnetic Interactions and Hadronic Structure
- 26. C. Grupen and B. A. Shwartz: Particle Detectors, Second edition
- 27. V. Gribov: Strong Interactions of Hadrons at High Energies
- 28. I. I. Bigi and A. I. Sanda: CP Violation, Second edition
- 29. P. Jaranowski and A. Królak: Analysis of Gravitational-Wave Data
- 30. B. L. Ioffe, V. S. Fadin and L. N. Lipatov: *Quantum Chromodynamics: Perturbative and Nonperturbative Aspects*
- 31. J. M. Cornwall, J. Papavassiliou and D. Binosi: *The Pinch Technique and its Applications to Non-Abelian Gauge Theories*
- 32. J. Collins: Foundations of Perturbative QCD
- 33. Y. V. Kovchegov and E. Levin: Quantum Chromodynamics at High Energy
- 34. J. Rak and M. J. Tannenbaum: High-pT Physics in the Heavy Ion Era
- 35. J. F. Donoghue, E. Golowich and B. R. Holstein: Dynamics of the Standard Model, Second edition
- 36. F. Sauli: Gaseous Radiation Detectors: Fundamentals and Applications

Cambridge University Press & Assessment 978-1-009-29118-7 — Gaseous Radiation Detectors Fabio Sauli Frontmatter <u>More Information</u>

GASEOUS RADIATION DETECTORS

Fundamentals and Applications

FABIO SAULI

European Organization for Nuclear Research CERN, Geneva, Switzerland

Cambridge University Press & Assessment 978-1-009-29118-7 — Gaseous Radiation Detectors Fabio Sauli Frontmatter <u>More Information</u>

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781009291187

DOI: 10.1017/9781009291200

© Fabio Sauli 2022

This work is in copyright. It is subject to statutory exceptions and to the provisions of relevant licensing agreements; with the exception of the Creative Commons version the link for which is provided below, no reproduction of any part of this work may take place without the written permission of Cambridge University Press.

An online version of this work is published at doi.org/10.1017/9781009291200 under a Creative Commons Open Access license CC-BY-NC-ND 4.0 which permits re-use, distribution and reproduction in any medium for non-commercial purposes providing appropriate credit to the original work is given. You may not distribute derivative works without permission. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/4.0

All versions of this work may contain content reproduced under license from third parties. Permission to reproduce this third-party content must be obtained from these third-parties directly.

When citing this work, please include a reference to the DOI 10.1017/9781009291200

First published 2015 Reissued as OA 2022

A catalogue record for this publication is available from the British Library.

ISBN 978-1-009-29118-7 Hardback ISBN 978-1-009-29121-7 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-1-009-29118-7 — Gaseous Radiation Detectors Fabio Sauli Frontmatter <u>More Information</u>

Contents

	Acronyms		<i>page</i> ix
	Prefa	ce	xiii
1	Introduction		1
	1.1	Historical background	1
	1.2	Gaseous detectors: a personal recollection	4
	1.3	Basic processes in gaseous counters	20
	1.4	Outline of the book	23
2	Electromagnetic interactions of charged particles with matter		24
	2.1	Generalities on the energy loss process	24
	2.2	The Bethe–Bloch energy loss expression	28
	2.3	Energy loss statistics	29
	2.4	Delta electron range	40
3	Interaction of photons and neutrons with matter		43
	3.1	Photon absorption and emission in gases	43
	3.2	Photon absorption: definitions and units	44
	3.3	Photon absorption processes: generalities	46
	3.4	Photon absorption in gases: from the visible to the near	
		ultra-violet domain	49
	3.5	Photo-ionization: near and vacuum ultra-violet	53
	3.6	Photo-ionization in the X-ray region	56
	3.7	Compton scattering and pair production	62
	3.8	Use of converters for hard photons detection	63
	3.9	Transparency of windows	67
	3.10	Detection of neutrons	68
4	Drift and diffusion of charges in gases		76
	4.1	Generalities	76

v

vi		Contents	
	4.2	Experimental methods	76
	4.3	Thermal diffusion of ions	80
	4.4	Ion mobility and diffusion in an electric field	82
	4.5	Classic theory of electron drift and diffusion	87
	4.6	Electron drift in magnetic fields	90
	4.7	Electron drift velocity and diffusion: experimental	91
	4.8	Electron capture	106
	4.9	Electron drift in liquid noble gases	112
	4.10	Transport theory	114
5	Collisional excitations and charge multiplication in uniform fields		129
	5.1	Inelastic electron-molecule collisions	129
	5.2	Excitations and photon emission	130
	5.3	Ionization and charge multiplication	143
	5.4	Avalanche statistics	149
	5.5	Streamer formation and breakdown	153
6	Parallel plate counters		160
	6.1	Charge induction on conductors	160
	6.2	Signals induced by the motion of charges in uniform fields	161
	6.3	Analytical calculation of charge induction	165
	6.4	Signals induced by the avalanche process	172
	6.5	Grid transparency	175
	6.6	Applications of parallel plate avalanche counters (PPACs)	177
7	Proportional counters		182
	7.1	Basic principles	182
	7.2	Absolute gain measurement	188
	7.3	Time development of the signal	188
	7.4	Choice of the gas filling	191
	7.5	Energy resolution	194
	7.6	Scintillation proportional counters	198
	7.7	Space-charge gain shifts	201
	7.8	Geiger and self-quenching streamer operation	206
	7.9	Radiation damage and detector ageing	207
8	Multi	-wire proportional chambers	211
	8.1	Principles of operation	211
	8.2	Choice of geometrical parameters	215
	8.3	Influence on gain of mechanical tolerances	216
	8.4	Electrostatic forces and wire stability	218

		Contents	vii
	8.5	General operational characteristics: proportional and	
		semi-proportional	221
	8.6	Saturated amplification region: Charpak's 'magic gas'	226
	8.7	Limited streamer and full Geiger operation	230
	8.8	Discharges and breakdown: the Raether limit	231
	8.9	Cathode induced signals	234
	8.10	The multi-step chamber (MSC)	245
	8.11	Space charge and rate effects	249
	8.12	Mechanical construction of MWPCs	252
9		chambers	264
	9.1	Single wire drift chambers	264
	9.2	Multi-cell planar drift chambers	265
	9.3	Volume multi-wire drift chambers	275
	9.4	Jet chambers	280
	9.5	Time expansion chamber	282
	9.6	Determination of the longitudinal coordinate from current division	294
	9.7	Electrodeless drift chambers	284 287
	9.7 9.8		287 290
	9.8 9.9	General operating considerations Drift chamber construction	290 290
	9.9	Diff chamber construction	290
10		projection chambers	292
	10.1	Introduction: the precursors	292
	10.2	Principles of operation	293
	10.3	TPC-based experiments	297
	10.4	Signal induction: the pad response function	301
	10.5	Choice of the gas filling	312
	10.6	Coordinate in the drift direction and multi-track resolution	315
	10.7	Positive ion backflow and gating	318
	10.8	TPC calibration	323
	10.9		324
	10.10	Negative ion TPC	325
11	Multi	-tube arrays	327
	11.1	Limited streamer tubes	327
	11.2	Drift tubes	329
	11.3	Straw tubes	335
	11.4	Mechanical construction and electrostatic stability	340
12	Resis	tive plate chambers	344
	12.1	Spark counters	344

viii	Contents		
	12.2	Resistive plate counters (RPCs)	346
	12.3	Glass RPCs	353
	12.4	Multi-gap RPCs	355
	12.5	Simulations of RPC operation	360
13	Micro	p-pattern gaseous detectors	365
	13.1	The micro-strip gas counter	365
	13.2	Novel micro-pattern devices	373
	13.3	Micro-mesh gaseous structure (Micromegas)	378
	13.4	Gas electron multiplier (GEM)	383
	13.5	MPGD readout of time projection chambers	392
	13.6	Active pixel readout	395
	13.7	MPGD applications	398
14		enkov ring imaging	399
	14.1	Introduction	399
	14.2	Recalls of Cherenkov ring imaging theory	403
	14.3	First generation RICH detectors	407
	14.4	TMAE and the second generation of RICH detectors	410
	14.5	Third generation RICH: solid caesium iodide (CsI)	
		photocathodes	417
	14.6	CsI-based RICH particle identifiers	423
	14.7	Micro-pattern based RICH detectors	424
15	Misce	ellaneous detectors and applications	430
	15.1	Optical imaging chambers	430
	15.2	Cryogenic and dual-phase detectors	434
16	Time	degeneracy and ageing	441
	16.1	Early observations	441
	16.2	Phenomenology of the radiation damages	443
	16.3	Quantitative assessment of the ageing rates	449
	16.4	Methods of preventing or slowing down the ageing process	451
	16.5	Ageing of resistive plate chambers	455
	16.6	Micro-pattern detectors	457
	Furth	er reading on radiation detectors	460
	Refer		461
	Index		494

Cambridge University Press & Assessment 978-1-009-29118-7 — Gaseous Radiation Detectors Fabio Sauli Frontmatter <u>More Information</u>

Acronyms

ADC:	analogue to digital converter
ASIC:	application specific integrated circuit
ATLAS:	one of the LHC experiments at CERN
BNL:	Brookhaven National Laboratory, USA
CAT:	compteur à trous
CEN-Saclay:	Centre d'Etudes Nucléaires, Saclay, France
CERN:	European Organization for Nuclear Research, Geneva,
	Switzerland
CGS:	electrostatic units: centimetres, grams, seconds
COG:	centre of gravity
CRID:	Cherenkov ring imaging detector
CSC:	cathode strip chamber
CsI:	caesium iodide
CVD:	carbon vapour deposition
DC:	drift chambers
DME:	dimethyl ether (CH ₃) ₂ O
FERMILAB:	Fermi National Laboratory, Batavia, Illinois, USA
FGLD:	field gradient lattice detector
FWHM:	full width at half maximum
GDD:	Gas Detectors Development group at CERN
GEM:	gas electron multiplier
GSPC:	gas proportional scintillation counter
HADC:	high-accuracy drift chamber
HBD:	hadron blind detector
HMPID:	high momentum particle identification detector
IHEP:	Institute of High Energy Physics, Protvino, Russia Federation
ILC:	International Linear Collider
ILL:	Institut Laue-Langevin, Grenoble, France

ix

х	Acronyms
INFN:	Istituto Nazionale di Fisica Nucleare, Italy
ISIS:	identification of secondary particles by ionization sampling
IVI:	interaction vertex imaging
KEK:	High Energy Accelerator Research Organization, Kamiokande,
	Japan
LAr:	liquid argon
LBL:	Lawrence Berkeley Laboratory
LEM:	large electron multiplier
LEP:	Large Electron–Positron collider at CERN
LHC:	Large Hadron Collider at CERN
LNF:	Laboratori Nazionali Frascati, Italy
LNGS:	Laboratori Nazionali Gran Sasso, Italy
MDT:	monitored drift tubes
Micromegas:	micro-mesh gaseous structure
MIPA:	micro-pin array
MPGD:	micro-pattern gas detector
MRPC:	multi-gap resistive plate chamber
MSC:	multi-step chamber
MSGC:	micro-strip gas counter
MWDC:	multi-wire drift chamber
MWPC:	multi-wire proportional chamber
µPIC:	micro-pixel chamber
NSR:	nuclear scattering radiography
NTP:	normal temperature and pressure: 0°C, 1 atmosphere
PEP:	Electron Positron Collider at SLAC
PET:	positron emission tomography
PPAC:	parallel plate avalanche counter
PRR:	proton range radiography
PST:	plastic streamer tubes
P10:	mixture of 10% methane in argon
QE:	quantum efficiency
RHIC:	Relativistic Heavy Ion Collider, Brookhaven, USA
RICH:	ring imaging Cherenkov counter
RMS (rms):	root mean square (Gaussian standard deviation)
RPC:	resistive plate counter
SLAC:	Stanford Linear Accelerator Center
SLHC:	Super LHC at CERN
SPECT:	single photon emission computed tomography
SQS:	self-quenching streamer
SSC:	Superconducting Supercollider

Cambridge University Press & Assessment 978-1-009-29118-7 — Gaseous Radiation Detectors Fabio Sauli Frontmatter <u>More Information</u>

Acronyms

xi

STP:	standard temperature and pressure: 20°, 1 atmosphere
SWDC:	single-wire drift chambers
TEA:	triethyl amine $(C_2H_5)_3N$
TEC:	time expansion chamber
TERA:	Fondazione per Adroterapia Oncologica, Novara, Italy
TGC:	thin-gap chambers
TGEM:	thick gas electron multiplier
TMAE:	tetrakis dimethyl amino ethylene $C[(CH_3)_2N]_4$
TPC:	time projection chamber
TRIUMF:	Canada's National Laboratory for Particle and Nuclear Physics,
	Vancouver
TRT:	transition radiation tracker
UV:	ultra-violet
VUV:	vacuum ultra-violet
WIMP:	weakly interacting massive particle
WLS:	wavelength shifter

Cambridge University Press & Assessment 978-1-009-29118-7 — Gaseous Radiation Detectors Fabio Sauli Frontmatter <u>More Information</u>

Preface

Major scientific advances are the result of interplay between ground breaking theoretical intuitions and experimental observations, validating or contradicting the predictions. In elementary particle physics, the commissioning of high-energy accelerators and colliders demanded the development of innovative detectors capable of recording increasingly complex events; in astrophysics, where the scope is to detect radiation from remote sources, or ubiquitously present in the Universe but with little if any interaction with ordinary matter, the focus is rather on the realization of large volume, low noise devices capable of revealing rare events obscured by diffuse backgrounds. In both cases, dedicated gas-filled detectors have demonstrated their flexibility of conception and excellent performances.

Starting with Ernest Rutherford's original development of the single-wire proportional counter in the early 1900s, through the multi-wire and drift chambers introduced by Georges Charpak in the late sixties, to the powerful new tracking devices collectively named micro-pattern gas chambers, the development of gaseous detectors has been a continuous story of success and, sometimes, disappointments.

While many textbooks exist on gaseous detectors (see the Further Reading section), most of the information on recent progress in the field is scattered in thousands of articles, conference records, doctoral theses and other documents. This book aims to collate selected information in an organized way, reproducing relevant data on the various developments, providing extended references to published material as well as links to useful web-based tools and databases. The content is largely based on the many courses given by the author at CERN and various universities and research laboratories worldwide, and greatly profits from constructive interactions with the students. Whenever possible, simplified, back-of-the-envelope calculation examples are provided as a complement to more rigorous algorithms.

After a recall of the major processes of interaction between charged particles, photons and neutrons with the medium, releasing detectable messages in matter,

xiii

Cambridge University Press & Assessment 978-1-009-29118-7 — Gaseous Radiation Detectors Fabio Sauli Frontmatter More Information

xiv

Preface

the first part of the book follows the fate of the ionisation yields, released in a counter's gas, under the effect of externally applied electric and magnetic fields, from simple collection to charge multiplication and breakdown. Depending on the counter geometry and field strength, a detector can be made then to operate in simple charge collection, in a regime of avalanche charge multiplication with the detected charge proportional to the primary ionisation, or in gain-saturated regimes providing conveniently large signals, almost independent from the original charge. Primary or field-enhanced photon emission can also be exploited for detection. Each mode has its own advantages and disadvantages, discussed in the subsequent chapters, which have to be thoroughly analysed to best cope with the experimental needs.

Associated for many years with Georges Charpak's research group at CERN, I was easily fascinated by his enthusiasm in searching new directions for the development and applications of detectors, mostly based on the use of a gas as sensitive medium; a short personal recollection of my participation to these research efforts is illustrated in the first chapter of the book. Over the years, the activity of the group attracted many young scholars, who contributed to the various developments before returning to their home institution, often subsequently creating their own research team while keeping friendly and constructive contacts with our group; this book is dedicated to them and their works, with apologies for any mistake or omission.

I am particularly grateful to Ugo Amaldi, who hosted me in the TERA Foundation premises at CERN during the final drafting of the book; a warm word of appreciation goes to many colleagues who provided scientific help and support in obtaining original documents and reprint permissions: Marcello Abbrescia, Ugo Amaldi, Elena Aprile, Tullio Basaglia, Malte Hildebrandt, John Kadyk, Salete Leite, Eugenio Nappi, Anna Peisert-Elliott, Archana Sharma, Emile Schins, Graham Smith, Jerry Va'vra, and many others.

Last but not least, warm thanks to my daughter Raffaella who undertook the strenuous task of improving the language on a subject rather extraneous to her field of expertise.