Index

\(\alpha_s\)
- bag model fit, 262
- lattice, 298, 299
- running first order, 278
- running second order, 281, 282
- at low energy, 284, 285
- scale dependence, 280, 281
- thermal, 286
- approximant, 286

antimatter
- in the Universe, 6
- matter symmetry, 19, 153
- antiproton-to-proton ratio, 183
- from QGP, 16
- heavy ion enhancement, 19

bag model, 258
- action, 263
- bag constant, 38, 69, 261, 306
- boundary conditions, 263
- static-cavity solutions, 264
- strange-quark mass, 261

baryon, 25, 26
- \(\text{barys}, 1\)
- density
 - hydrodynamic expansion, 108
 - quark–gluon liquid, 310, 312, 313

Bessel function
- \(I_n, 140\)
- \(K_\nu, 195\)

\(x^2 K_2, 197\)
- non-relativistic limit, 196
- relativistic limit, 196

big-bang, 1
- differences from micro-bang, 4

boson
- condensate, 193
- distribution function, 194
- entropy per particle, 207

calorimeter, 177

canonical
- conservation of strangeness, 223
- ensemble, 192
 - multistrange particles, 226
 - particle enhancement, 231
 - particle suppression, 225, 232
 - hadron yield enhancement, 233
 - partition function, 224

cascade(\(sq\)), 33
- \(\Xi^*(1530)\) decay, 34

center of momentum
- accelerator energies, 72
- coordinate system, 82
- rapidity in asymmetric collisions, 84

charged-hadron multiplicity
- energy dependence, 180, 181
- ratio, 123

charm
- canonical suppression, 234, 235
- open, 23

389
thermal production, 329, 333, 334
LHC energy, 336
charmonium, 36
enhancement, 22
suppression, 21, 22
chemical
entropy equilibration, 115
equilibration
thermal rate, 99
equilibrium, 90
elementary interactions, 234
failure, 171
strangeness in HG, 352
gluon equilibration, 324
nonequilibrium
tropy, 115
heavy quarks, 98
SPS results, 357
relaxation time for strangeness, 335
chemical parameters
Pb–Pb at $\sqrt{s_{NN}} = 130$ GeV, 367
Pb–Pb system, 359, 360
S–Au/W/Pb system, 358
chemical potential, 57, 212
antiparticle, 60
isospin asymmetry, 213
local, 90
chiral condensate, 297
disoriented, 269
chiral symmetry, 44
bag model, 258
breaking, 44
color, 7
confinement, 38
current, 273
dynamic charge, 38
flux tube, 41
hyperfine interaction, 259
superconductive phase, 47
confinement, 6, 38
boundary condition, 264
origin, 38
correlations
Bose–Einstein, 171
cross section

geometric, 78
momentum average, 317
thermal average, 318
current algebra, 45
decoherence, 15
deconfinement at the AGS and SPS, 95
degeneracy
effective, 66
quantum gas, 61
degrees of freedom, 66, 67
electro-weak particles, 9
QGP, 52
detailed balance, 316
antibaryon production, 350
dileptons, 24
Dirac equation, 262
Doppler factor, 149
density, 195
at the RHIC, 185
hadronic gas, 209, 211
lattice QCD, 300
QGP, 53, 310
quantum gas, 69
quark–gluon liquid, 310, 312–314
ensemble
canonical, 192
grand-canonical, 192
micro-canonical, 191
statistical, 191
enthalpy, 191
entropy
Boltzmann gas, 114
chemical equilibration, 115
classical gas, 205, 206
conservation
ideal flow, 106
scaling solution, 128
content
phase-space distribution, 113
Fermi gas, 113
glue fireball, 116, 117
hadronization, 126
initial state, 129
isolated system, 114
Index

measurement, 121, 122
nonequilibrium, 115
particle production, 112
per baryon, 206
per particle, 114, 207
pion gas
super-saturated, 124
entropy density, 187
quark–gluon liquid, 310, 312–314
quark–gluon plasma, 315
equation of state
effect of particle mass, 199
finite-volume correction, 209
quark–gluon plasma, 303
relativistic ideal gas, 199
equilibrium
absolute chemical, 90
chemical, 90
local, 90, 95
kinetic, 96
relative chemical, 90
thermal, 90
explanation, 97
local, 96
eta function, 201
Euclidian space, 288
expansion
cooling, 112
decrease in temperature, 11
Hubble, 11
exponential mass spectrum
phase transition, 238
extensive variables, 187
Fadeev–Popov ghosts, 275
fermion
degeneracy factor, 201
distribution function, 194, 203
domain wall, 292
entropy per particle, 207
ideal-gas quark density, 204
lattice doubling, 291
fireball, 2, 95
entropy, 115
expanding, 137
thermal particle spectra, 141
expansion, 50
explosion, 51
flow of matter, 138
life span, 91
mass, 80
stages of evolution, 93
super-cooling, 51
fireball static
particle spectra, 131
first law of thermodynamics, 187
flavor
conservation, 214
symmetry, 269
free energy, 187, 188
lowest order in α_s, 304
perturbative expansion, 303
freeze-out
chemical and thermal, 158
Cooper–Frye formula, 141
surface
$1 + 1$ dimensions, 109, 110
velocity, 142
FRITIOF model, 103
fugacity, 56, 57, 213
antiparticle, 60
time dependence, 214
valence quark, 212
gauge invariance, 268
covariant derivative, 272
minimal coupling, 268
Gibbs condition
chemical potential, 50
temperature, 48
Gibbs’ condition
pressure, 48
Gibbs–Duham relation, 107, 190
gluon, 6, 24, 38
current, 273
degeneracy, 53
density, 63
equilibration, 324
field, 271
field condensate, 39
field correlator, 39
spectra, 120
Index

thermal mass, 305
yield of strangeness, 340
Goldstone boson, 44
grand-canonical ensemble, 57

hadron
abundances, 169
RHIC, 366
theoretical yield error, 240
finite-volume cluster, 247
in modification of a medium, 345
mass
bag model, 259
multiplicity of h^- at SPS, 166
ratios in A–A collisions at 14A GeV, 170
ratios in A–A collisions at 200A GeV, 169
size, 260

hadronic
hadros, 1
cascade, 102
mass spectrum, 217
exponential growth, 235–237
resonance interactions, 243

hadronic gas, 48
e/P, 210
asymmetry of strangeness, 215
energy density, 210
excluded volume, 251
consistency, 250
correction, 248
finite size EoS, 209
overheated, 51
phase space for strangeness, 217
pressure, 210
properties, 65
relativistic limit, 66
relaxation time for strangeness, 350
scattering phase shifts, 243

hadronization
deconfined matter, 350
in a volume, 141
statistical, 352
sudden, 126

entropy content, 126
surface emission, 142
Hagedorn gas, 236
critical temperature, 240
Hagedorn temperature, 53
HBT, 171, 172
correlations, 174, 175
kaon, 174
resonances, 174
transverse mass, 176
heat function, 191
heavy ion
baryon stopping, 74
collision
axis, 81
event generators, 102
interaction vertex, 81
participants, 78
spectators, 79
systems, 72
transport models, 102
experimental program
BNL–RHIC, 76
CERN–SPS, 75
rapidity gap, 73
hydrodynamics, 104
equations of motion, 105
Euler relation, 104
flow forces, 210
one-dimensional solution, 111

hyperon, 28
lambda decay, 28
lambda resonances, 28
number, 25
resonance, 31
sigma–baryon, 30
yield, 32, 33

ideal gas
clusters in bootstrap model, 256
energy per particle, 201, 202
entropy, 205
entropy per baryon, 206
quark partition function, 203
impact parameter, 79
isospin, 25
Index

particle counting, 214
quark current, 43
jet quenching, 23
kaon, 35
latent heat, 38, 69, 258, 261
lattice
 cell size, 294
 continuum limit, 294
 critical temperature, 301
 domain-wall fermions, 292
 dynamic quarks, 289
 energy density, 300
 infrared cutoff, 289
 mass of strange hadrons, 299
 mass of strange quarks, 299
 naive quark action, 291
 plaquette, 290
 pressure, 301
 with staggered fermions, 302
 procedure for simulations, 294, 295
QCD action, 289
quark mass, 298
quenched quarks, 289, 296
running coupling constant, 298, 299
scaling violation, 294
staggered quark action, 292
ultraviolet cutoff, 289
Wilson action, 290, 291
lepton, 6
 leptons, 1
level density
 N-particle, 241
 scattering phase shift, 242
 single-particle, 61
LHC
charge multiplicity, 181
Lorentz
 boosts, 83
 contraction, 82
 covariant gauge, 275
 invariant spectra, 132, 139
Mandelstam variables, 319
mass thermal, 305
matter–antimatter, 182
 symmetry, 4
Maxwell construction, 49
meson, 26, 27
 \(\phi, 36 \)
 mesons, 1
 strange, 25
omega, 34
 chemical equilibration, 349
 freeze-out temperature, 361
 production of decay in strangelets, 223
OSCAR, 100
pair production
 perturbative, 326
 Schwinger mechanism, 40
particle
density, 194
 glue fireball, 119
 phase-space distribution, 317
energy per particle, 198
ensemble, 192
indistinguishable, 55
momentum, 81
production, 95
\(\propto e^{-2m/T}, \propto e^{-m/T} \), 228
secondaries, 81
spectra, 62
 pseudorapidity, 137
 scaling solution, 128
 thermal, 135
 surface emission, 143
temperature, 152
particle ratios
 antiproton to proton, 182
 chemical fugacities, 218
in A–A collisions at 14A GeV, 170
in A–A collisions at 200A GeV, 169
in Pb–Pb collisions at \(\sqrt{s_{NN}} = 130 \) GeV, 367
in Pb–Pb collisions at 158A GeV, 359
Index

strange baryon–antibaryon, 160, 164

partition function
Boltzmann, 61
canonical, 56, 224
generating function, 58
grand-canonical, 57
quantum, 61
multicomponent system, 193
pressure ensemble, 190
quantum, 59
strange particles, 217
vacuum, 69

parton
cascade, 102
thermalization, 23

path integral, 288
Fermi determinant, 293

phase
crossover, 53
diagram, 46, 47, 49, 50
metastable, 51
mixed, 49
transition, 53
change in g, 9
quark-mass dependence, 53, 54

phase space
N-particle volume element, 242
Coulomb distortion, 215
entropy content
single-particle, 113
integral, 197
Lorentz-invariant, 139
occupancy
kinetic evolution, 323
quantum particle, 193

phase transition
ey early Universe, 9, 14
finite-volume, 238
fluctuations, 126

photon
density, 63
direct from QGP, 23
production, 24

pion
excess, 167, 168

gas, 124
properties, 125–127
production
enhancement, 127
suppression, 167
yield
charge asymmetry, 90

plasma
electron–ion, 54
Podolski–Armenteros analysis, 29, 30

pressure, 188
critical
early Universe, 10
effect of particle mass, 68, 199
hadronic gas, 209, 211
thermal, 306

pseudorapidity, 85
error, 87, 89
particle emission angle, 85

particle energy and momentum, 136
rapidity, 86–88

QCD, 267

K-factor
flavor production, 330

A parameter, 283
asymptotic freedom, 278
charge definition, 279
color-magnetic instability, 40
critical temperature, 301
Feynman diagrams, 277, 326
Lagrangian, 273
lattice action, 289
lattice formulation, 287
lattice pressure, 301
perturbative, 38, 274
Polyakov loop, 296, 297
renormalization, 278

β and γ functions, 281
running α_{s}
initial conditions, 284
Index

sum rules, 39, 45
temperature dependence of α_s, 286
thermal Feynman diagrams, 304
transmutation of scales, 279
two-loop α_s, 286
value of Λ, 283
QED instability, 40
QGP
energy density, 315
entropy density, 315
pressure, 307
quark, 6, 24, 38
bag model, 38, 262
cavity state, 260
charge, 6
chiral condensate, 297
chiral symmetry, 44
cold quark matter, 47
confinement, 38
degeneracy, 53
energy in the bag, 266
flavors, 6
free, 53, 54
ideal-gas density, 204
Lagrangian, 273
lattice action, 291
mass, 7
massless limit, 45
phase structure, 53, 54
running, 282, 283, 328
sum rules, 46
pairing, 47
production
running threshold, 284
strange, 8
sum rules, 45
thermal mass, 305
quark density
statistical equilibrium density, 325
quark–gluon liquid, 70, 306
quark–gluon plasma
B_s formation, 37
comparison of signatures, 24
critical temperature, 10
degeneracy, 53
degrees of freedom, 52
energy density, 53, 310
equation of state, 303
equations of state, 310, 312, 313
evidence, 162
phase-space enhancement, 363–365
formation, 153
hadronization at the RHIC, 367
in the early Universe, 5
negative pressure, 52
observability, 15, 16
partition function, 70, 304
perturbative QCD interactions, 70, 304
phase diagram, 48
strange-antibaryon signature, 351
strange-particle signature, 18
sudden hadronization, 52
super-cooling
mechanical instability, 52
thermodynamic potential, 310
undercooled, 51
yield of strangeness, 362, 363
quasi-particle, 59, 305
quasirapidity distribution
protons and kaons, 89
rapidity, 82
$\bar{\Lambda}$ and Λ spectra in S–S collisions, 144
asymmetric systems, 84
baryon-poor region, 184
CM reflection, 144
fragmentation region, 145
gap, 72, 73
negative-hadron distribution, 165
particle spectra, 83
scaling solution, 128
pseudorapidity, 86–88
velocity relation, 82
reference frame
center of momentum, 79
relaxation time, 98
electro-weak interactions, 92
production of strangeness, 336
thermal production of charm, 337
RHIC
charged-hadron production, 180, 182
first results, 178
Riemann eta and zeta functions, 200
search for strangelets, 223
spectra
inverse transverse slope
system size, 152
Lorentz-invariant, 139
pseudorapidity, 136, 138
rapidity
‘net’ baryons, 146
massless QGP quanta, 145
schematic representation, 147
three-fluid model, 146
rapidity window, 133
strange hadron
inverse transverse slope, 153
thermal, 135
thermal fit
statistical parameters, 157
transverse mass, 148
Λ, Ω + Ω, 155
π⁰ and η, 151
strange particles, 149, 150
strange-particle analysis, 154, 155
spin–spin interaction, 40
statistical bootstrap, 244
cluster formation, 256
critical behavior, 254
critical curve, 255
hypothesis, 243
idea, 244
model, 247, 252
physical interpretation, 257
singularity, 246
statistical ensemble, 191
statistical hadronization, 352
enhancement of occupancy of phase space, 363
excess of omega, 360
RHIC, 366
statistical mechanics
covariant formulation, 248
statistical significance, 358
Stefan–Boltzmann law, 52, 69
strange antibaryons
signature of deconfinement, 160, 164, 351
strange hadron
inverse transverse slope, 153
strange particle
non-statistical yield, 157
spectra, 19
strangeness
φ, 153
abundance at the RHIC, 184
chemical equilibrium, 98
chemical-relaxation time, 335, 336
conservation, 222
canonical, 223
canonical QGP and HG, 229
distillation, 222
enhancement, 19, 160, 163, 164
exchange reaction, 344, 345
excitation function, 16, 17
hyperon yield, 31, 32
in baryons and mesons, 25
kinetic evolution at the RHIC, 338
lattice quark mass, 299
negative chemical potential, 221, 222
observables, 171
Okubo–Zweig–Izuka rule, 344
particle decays, 81
partition function, 217
phase-space occupancy, 339, 364, 365
enhancement, 363
production, 299, 326, 327
glue equilibration, 340
SPS rapidity distribution, 159
production in HG, 343, 344, 348, 351
QGP signature, 18
Index

- quark mass, 8, 258
- relative equilibrium, 91
- signature of QGP, 15, 24, 160, 164
- symmetry in QGP, 214
- thermal production, 332, 334
- Wróblewski factor, 340, 341
- yield at SPS, 159
- yield at the RHIC, 369
- yield in QGP, 98, 362, 363
- streamer chamber, 81
 - adjoint representation, 270
 - Gell-Mann representation, 269
- temperature, 188
 - evolution, 94
 - glue fireball, 118
 - Hagedorn, 53
 - inverse slope, 56
 - local, 90
 - transverse slope, 152
- thermal
 - collision frequency, 320, 331
 - equilibration, 93
 - equilibrium, 90
 - Feynman diagrams, 304
 - particle spectra, 135
 - expanding fireball, 141
 - pressure, 306
 - QCD energy scale, 285
 - reaction rate, 318
 - reactivity, 318
- thermal mass, 305, 308
- thermalization
 - transport models, 104
- thermodynamic potential
 - quark–gluon liquid, 310
- three-body reactions, 349
- transverse energy, 177
 - distribution, 177, 178
 - per charged particle, 179
 - pseudorapidity density, 180
 - scaling with A, 178
- transverse mass, 82, 148
- transverse-momentum acceptance, 134
- upsilonium, 37
- vacuum
 - energy, 41
 - density, 42
 - zero-point, 41
 - instability, 41
 - latent heat, 38, 261
 - partition function, 69
 - perturbative, 38
 - polarization, 277
 - restoration of symmetry, 46
 - structure, 258
 - true, 38
- velocity
 - cylindrical representation, 139
 - relative, 319
 - sound, 11, 107
- Wall Street, 63
- Wilson action, 291
- Yang–Mills fields, 271
- zeta function, 200