
Cambridge University Press & Assessment
978-1-009-29038-8 — Quarks, Gluons and Lattices
Michael Creutz
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1 

Quarks and gluons 

Our prime candidate for a fundamental theory of strong hadronic forces 

is a model of quarks interacting through the exchange of non-Abelian 

gauge fields. The quark model represents a new level of substructure within 

hadronic particles such as the proton. We have several compelling reasons 

to believe in this next layer of matter. 

First, the large cross sections observed in deeply inelastic lepton-hadron 

scattering indicate important structure at distance scales of less than 10-16 

centimeters, whereas the overall proton electromagnetic radius is of order 

10-13 centimeters. The angular dependences observed in these experiments 

suggest that the underlying charged constituents carry half-integer spin. 

These studies have raised the question of whether it is theoretically possible 

to have pointlike objects in a strongly interacting theory. Asymptotically 

free non-Abelian gauge interactions offer this hope (Perkins, 1977). 

A second impetus for a theory of quarks lies in low energy hadronic 

spectroscopy. Indeed, it was the successes of the eightfold way (Gell-Mann 

and Ne'eman, 1964) which originally motivated the quark model. We now 

believe that the existence of two' flavors' of low mass quarks lies at the 

heart of the isospin symmetry in nuclear physics. Adding a somewhat 

heavier' strange' quark to the theory gives rise to the celebrated multiplet 

structure in terms of representations of the group SU(3). 

Third, we have further evidence for compositeness in the excitations of 

the low-lying hadrons. Particles differing in angular momentum fall neatly 

into place on the famous' Regge trajectories' (Collins and Squires, 1968). 

In this way families of states group together as orbital excitations of some 

underlying system. The sustained rising of these trajectories with increasing 

angular momentum points toward strong long-range forces. This originally 

motivated the stringlike models of hadrons. 

Finally, the idea of quarks became incontrovertible with the discovery 

of the 'hydrogen atoms' of elementary particle physics. The intricate 

spectroscopy of the charmonium and upsilon families is admirably 

explained in potential models for non-relativistic bound states of heavy 

quarks (Eichten et aI., 1980). 
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2 Quarks, gluons and lattices 

Despite these successes of the quark model, an isolated quark has never 

been observed. (Some hints of fractionally charged macroscopic pieces of 

matter may eventually prove to contain unbound quarks, or might be a 

sign of some new and even more exciting type of matter (LaRue, Phillips 

and Fairbank, 1981).) These basic constituents of matter do not copiously 

appear as free particles emerging from present laboratory experiments. 

This is in marked contrast to the empirical observation in hadronic physics 

that anything which can be created will be. The difficulty in producing 

quarks has led to the speculation of an exact confinement. Indeed, it may 

be simpler to imagine a constituent which can never be produced than an 

approximate imprisonment relying on some unnaturally effective sup-

pression factor in a theory seemingly devoid of any large dimensionless 

parameters. 

But how can we ascribe any reality to an object which cannot be 

produced? Are we just dealing with some sort of mathematical trick? We 

will now'argue that gauge theories potentially possess a simple mechanism 

for giving constituents infinite energy when in isolation. In this picture a 

quark-antiquark pair will experience an attractive force which remains 

non-vanishing even for asymptotically large separations. This linearly 

rising long-distance potential energy forms the basis of essentially all 

models of quark confinement. 

We begin by coupling the quarks to a conserved • gluo-electric' flux. In 

usual electromagnetism the electric field lines thus produced spread and 

give rise to the inverse square law Coulombic field. If in our theory we can 

now somehow eliminate massless fields, then a Coulombic spreading will 

no longer be a solution to the equations. If in removing the massless fields 

we do not destroy the Gauss law constraint that the quarks are the sources 

of electric flux, the electric lines must form into tubes of conserved flux, 

schematically illustrated in figure 1.1. These tubes will only end on the 

quarks and their antiparticles. A flux tube is a real physical object carrying 

a finite energy per unit length. This is the storage medium for the linearly 

rising interquark potential (Kogut and Susskind, 1974). 

A simple model for this phenomenon is a type II superconductor 

containing magnetic monopole impurities. Because of the Meissner effect 

(Meissner and Ochsenfeld, 1933), a superconductor does not admit 

magnetic fields. However, if we force a hypothetical magnetic monopole 

into the system, its lines of magnetic flux must go somewhere. Here the 

role of the' gluo-electric' flux is played by the magnetic field, which will 

bore a tube of normal material through the superconductor until it ends 

on an antimonopole or it leaves the boundary of the system. Such flux 
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Quarks and gluons 3 

tubes have been experimentally observed in applied magnetic fields 

(Huebner and Clem, 1974). 

Another example of this mechanism occurs in the bag model (Chodos 

et al., 1975). Here the gluonic fields are unrestricted in the baglike interior 

of a hadron but forbidden by ad hoc boundary conditions from extending 

outside. In attempting to extract a single quark from a proton, one would 

draw out a long skinny bag carrying the gluo-electric flux of the quark back 

to the remaining constituents. 

Fig. 1.1. A flux tube from a quark to an antiquark. 

The above models may be interesting phenomenologically, but they are 

too arbitrary to be considered as the basis for fundamental theories. In 

their search for a more elegant model, theorists have been drawn to 

non-Abelian gauge fields. This dynamical system of coupled gluons begins 

like electrodynamics with a set of massless gauge fields interacting with the 

quarks. Using the freedom of an internal symmetry, the action includes 

self-couplings of the gluons. The bare massless fields are all charged with 

respect to each other. The confinement conjecture is that this input theory 

of massless charged particles is unstable to a condensation of the vacuum 

to a state in which only massive excitations can propagate. In such a state 

the gluonic flux around quarks should form into the tubes needed for linear 

confinement. Much of the recent effort in elementary particle theory has 

gone into attempts to show that this indeed takes place. 

The confinement phenomenon makes the theory of the strong interac'-

tions qualitatively different from theories of the electromagnetic and 

weak forces. The fundamental fields of the Lagrangian do not manifest 

themselves in free hadronic spectrum. In not observing free quarks and 

gluons, we are led to the conjecture that all observable strongly interacting 

particles are gauge singlet bound states of these fundamental constituents. 

In the usual quark model baryons are bound states of three quarks. Thus 

the gauge group should permit singlets to be formed from three objects 

in the fundamental representation. This motivates the use of SU(3) as the 

underlying group of the strong interactions. This internal symmetry must 

not be confused with the broken SU(3) represented in spectroscopic 

multiplets. Ironically, one of the original motivations for quarks has now 
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4 Quarks, gluons and lattices 

become an accidental symmetry. The symmetry considered here is hidden 

behind the confinement mechanism, which only permits us to observe 

singlet states. 

For the presentation in this book we assume, perhaps too naively, that 

the nuclear interactions can be considered in isolation from the much 

weaker effects of electromagnetism, weak interactions, and gravitation. 

This does not preclude the possible application of the techniques presented 

here to the other interactions. Indeed, grand unification may be crucial for 

a consistent theory of the world. To describe physics at normal laboratory 

energies, however, only for the strong interaction must we go beyond 

well-established perturbative methods. Thus we frame our discussion 

around quarks and gluons. 
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Lattices 

The best evidence we have for confinement in a non-Abelian gauge theory 

of the strong interactions comes by way of Wilson's (1974) formulation 

on a space-time lattice. At first this prescription seems a little peculiar 

because the vacuum is not a crystal. Indeed, experimentalists work daily 

with relativistic particles showing no deviations from the continuous 

symmetries ofthe Lorentz group. Why, then, have theorists in recent years 

spent so much time describing field theory on the scaffolding of a space-time 

lattice? 

The lattice represents a mathematical trick. It provides a cutoff removing 

the ultraviolet infinities so rampant in quantum field theory. As with any 

regulator, it must be removed after renormalization. Physics can only be 

extracted in the continuum limit, where the lattice spacing is taken to zero. 

But infinities and the resulting need for renormalization have been with 

us since the beginnings of relativistic quantum mechanics. The program 

for electrodynamics has had immense success without recourse to discrete 

space. Why reject the time-honored perturbative renormalization pro-

cedures in favor of a new cutoff scheme? 

We are driven to the lattice by the rather unique feature of confinement 

in the strong interactions. This phenomenon is inherently non-perturbative. 

The free theory with vanishing coupling constant has no resemblance to 

the observed physical world. Renormalization group arguments, to be 

presented in detail in later chapters, indicate severe essential singularities 

when hadronic properties are regarded as functions of the gauge coupling. 

This contrasts sharply with the great successes of quantum electrodynamics, 

where perturbation theory was central. Most conventional regularization 

schemes are based on the Feynman expansion; some process is calculated 

until a divergence is met in a particular diagram, and this divergence is 

then removed. To go beyond the diagrammatic approach, one needs a 

non-perturbative cutoff. Herein lies the main virtue of the lattice, which 

directly eliminates all wavelengths less than twice the lattice spacing. This 

occurs before any expansions or approximations are begun. 

On a lattice, a field theory becomes mathematically well-defined and can 
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6 Quarks, gluons and lattices 

be studied in various ways. Lattice perturbation theory, although somewhat 

awkward, recovers all the conventional results of other regularization 

schemes. Discrete space-time, however, is particularly well-suited for a 

strong coupling expansion. Remarkably, confinement is automatic in this 

limit where the theory reduces to one of quarks on the ends of strings with 

a finite energy per unit length. Most recent research has concentrated on 

showing that this phenomenon survives the continuum limit. 

A lattice formulation emphasizes the close connections between field 

theory and statistical mechanics. Indeed, the strong coupling treatment is 

equivalent to a high temperature expansion. The deep ties between these 

disciplines are manifest in the Feynman path integral formulation of 

quantum mechanics (Feynman, 1948; Dirac, 1933, 1945). In Euclidian 

space, a path integral is equivalent to a partition function for an analogous 

statistical system. The square of the field theoretical coupling constant 

corresponds directly to the temperature. Thus, the particle physicist has 

available the full technology of the condensed matter theorist. 

Confinement is natural in the strong coupling limit of the lattice theory; 

however, this is not the region of direct physical interest, for which a 

continuum limit is necessary. The coupling constant on the lattice represents 

a bare coupling at a length scale of the lattice spacing. Non-Abelian gauge 

theories possess the property of asymptotic freedom, which means that in 

the short distance limit the effective coupling goes to zero. This remarkable 

phenomenon allows predictions for the observed scaling behavior in deeply 

inelastic collisions. Indeed, this was one of the original motivations for a 

non-Abelian gauge theory of the strong interactions. The consequence for 

the lattice theory, however, is that the bare coupling must be taken to zero 

as the lattice spacing decreases towards the continuum limit. Thus we 

are inevitably led out of the high temperature regime and into a low 

temperature domain. Along the way in a general statistical system one 

might expect to encounter phase transitions. Such qualitative shifts in the 

physical characteristics of a system can only hamper the task of showing 

confinement in the non-Abelian theory. In later chapters we will present 

evidence that such troublesome transitions can be avoided in the four-

dimensional SU(3) gauge theory of the nuclear force. 

Although our ultimate goal with lattice gauge theory is an understanding 

of hadronic physics, many interesting phenomena arise which are peculiar 

to the lattice. We will see non-trivial phase structure occurring in a variety 

of models, some of which do not correspond to any continuum field 

theory. The lattice formulation is highly non-unique and thereby spurious 

transitions can be alternately introduced and removed. We will also see 
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Lattices 7 

that the statistical mechanics of gauge models displays curious analogies 

with magnetic systems in half the number of space-time dimensions. Even 

quantum electrodynamics shows interesting structure in certain lattice 

formulations. This rich spectrum of phenomena has led to the recent 

popularity of lattice field theories and motivates this book. 
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Path integrals 

and statistical mechanics 

The Feynman path integral formulation of quantum mechanics reveals 

deep connections with statistical mechanics. This chapter is concerned with 

this relationship for the simple case of a non-relativistic particle in a 

potential. Starting with a partition function representing a path integral 

on an imaginary time lattice, we will show how a transfer matrix formalism 

reduces the problem to the diagonalization of an operator in the usual 

quantum mechanical Hilbert space of square integrable functions (Creutz, 

1977). In the continuum limit of the time lattice, we obtain the canonical 

Hamiltonian. Except for our use of imaginary time, this treatment is 

identical to that in Feynman's early work (Feynman, 1948). 

We begin with the Lagrangian for a free particle of mass m moving in 

potential V(x) 
L(x,x) = K(x) + V(x), (3.1) 

(3.2) 

where x is the time derivative of the coordinate x. Velocity-dependent 

potentials are beyond the scope of this book. Note the unconventional 

relative positive sign between the two terms in eq. (3.1). This is because 

we formulate the path integral directly in imaginary time. This improves 

mathematical convergence, yet leaves us with the usual Hamiltonian for 

diagonalization. 

For any trajectory we have an action 

S = f dt L(x(t), x(t», (3.3) 

which appears in the path integral 

Z = f[dX(I)]e- S • (3.4) 

Here the integral is over all trajectories x(t). As it stands, eq. (3.4) is rather 

poorly defined. To characterize the possible trajectories we introduce a 

cutoff in the form of a time lattice. Putting our system into a time box of 

total length T, we divide this interval into 

N=T/a, (3.5) 

discrete time slices, where a is the timelike lattice spacing. Associated with 
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Path integrals and statistical mechanics 9 

the i'th such slice is a coordinate Xi' This construction is sketched in figure 

3.1. Replacing the time derivative of X with a nearest-neighbor difference, 

we reduce the action to a sum 

S = a~:[!m(Xi+la-XJ + V(Xi)} (3.6) 

The integral in eq. (3.4) is now defined as an integral over all the 

coordinates 

~ 

~ 

ts 
t.. 

~ 

t2 

tl 
oL-__ ~L-~ __ ~ __ L-~L- __ L-__ L-_ 

x 

(3.7) 

Fig. 3.1. Dividing time into a lattice. (From Creutz and Freedman, 1981.) 

Eq. (3.7) is precisely in the form of a partition function for a statistical 

system. We have a one-dimensional chain of coordinates Xi' The action 

represents the inverse temperature times the Hamiltonian of the thermal 

analog. We will now show that evaluation of this partition function is 

equivalent to diagonalizing a quantum mechanical Hamiltonian obtained 

from this action with canonical methods. This is done via the transfer 

matrix. 

The key to the transfer-matrix analysis is to note that the local nature 

of the action in eq. (3.6) permits us to write the partition function in the 

form of a matrix product f 
Z = n dXi 7;,i+1. Xi' 

i 

where the transfer-matrix elements are 

(3.8) 

7;,'. X = exp [ - ;:(X'-X)2- ~(V(x')+ V(X»]. (3.9) 
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10 Quarks, gluons and lattices 

This operator acts in the Hilbert space of square integrable functions, 

where the inner product is the standard 

(lfr'l lfr) = f dx lfr'*(x) lfr(x). (3.10) 

We introduce the non-normalizable basis states {Ix)} such that 

I lfr) = f dx lfr(x) I x), 

(x' I x) = 8(x' -x), 

1 = fdXIX)(XI. 

(3.11 ) 

(3.12) 

(3.13) 

The canonically conjugate operators p and x satisfy 

xix) = xix), (3.14) 

(3.15) 

(3.16) 

[p,x] = -i, 

e-ipAlx) = Ix+A). 

In this Hilbert space the operator T is defined via its matrix elements 

(x'i TI x) = 7;;., x' (3.17) 

where Tx·. x is given in eq. (3.8). With periodic boundary conditions for 

our lattice of N sites, the path integral is compactly expressed 

Z = Tr(TN). (3.18) 

The operator T is easily written in terms of the conjugate variables p 
and x 

T = fdA e-aV(X)/2 e-A'm/(2a)-ipA e-aV(i)/2. (3.19) 

To prove this equation, simply check that the right hand side has the matrix 

elements of eq. (3.9). The integral over A is Gaussian and gives 

T = (21Tajm)1 e-taV(X) e-tap2/m e-taV(i). (3.20) 

Connection with the usual quantum mechanical Hamiltonian appears in 

the small lattice spacing limit. When a is small, the exponents in eq. (3.20) 

combine to give 

where 

T = (21Tajm)te-aH+O(a3 ), 

H = p2j(2m) + V(X). 

(3.21) 

(3.22) 

This is just the canonical Hamiltonian corresponding to the Lagrangian 

in eq. (3.1). 

The procedure for going from a path-integral to a Hilbert-space 

formulation of quantum mechanics consists of three steps. First define the 

path integral with a time lattice. Then construct the transfer matrix and 

the Hilbert space on which it operates. Finally, take the logarithm of the 

transfer matrix and identify the negative of the coefficient of the linear term 
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