Cambridge University Press & Assessment 978-1-009-29031-9 — QCD as a Theory of Hadrons Stephan Narison Frontmatter <u>More Information</u>

This book provides a pedagogical introduction to the perturbative and non-perturbative aspects of quantum chromodynamics (QCD).

Introducing the basic theory and recent advances in QCD, it also reviews the historical development of the subject up to the present day, covering pre-QCD ideas of strong interactions such as the quark and parton models, the notion of colours, current algebra and the *S*-matrix approach. The author then discusses tools of quantum field theory, the symmetry and quantization of gauge theory, techniques of dimensional regularization and renormalization, QED high-precision tests, deep inelastic scattering and hard processes in hadron collisions, hadron jets, and inclusive processes in $e + e^-$ annihilations. Other topics include power corrections and the technologies of the Shifman–Vainshtein–Zakharov (SVZ) operator product expansion, renormalizations and phenomena beyond the SVZ expansion. The final parts of the book are devoted to modern non-perturbative approaches to QCD, such as lattice and effective theories, and the phenomenological aspects of QCD spectral sum rules.

The book will be a valuable reference for graduate students and researchers in high-energy particle and nuclear physics, both theoretical and experimental.

This title, first published in 2005, has been reissued as an Open Access publication on Cambridge Core.

STEPHAN NARISON graduated from the University of Antananarivo, Madagascar and received his Doctorat d'Etat from the University of Marseille. He is currently Director of Research in theoretical physics at the French Centre National de la Recherche Scientifique (CNRS), at the Laboratoire de Physique Mathématique et Théorique de l'Université Montpellier II. He has conducted research in laboratories and university departments throughout the world. Starting his research in the high-precision tests of QED, his main area of research is in non-perturbative aspects of QCD, using QCD spectral sum rules to study the properties of hadrons and low-energy phenomena in terms of the fundamental parameters from QCD first principles. He has worked in this field for more than two decades and has actively participated in its development. Professor Narison has had numerous publications in leading journals, as well as contributing to several books on high-energy physics. He is also the founder and chairman of the QCD Montpellier International Conference Series.

Cambridge University Press & Assessment 978-1-009-29031-9 — QCD as a Theory of Hadrons Stephan Narison Frontmatter More Information

CAMBRIDGE MONOGRAPHS ON PARTICLE PHYSICS NUCLEAR PHYSICS AND COSMOLOGY 17

General Editors: T. Ericson, P. V. Landshoff

- 1. K. Winter (ed.): Neutrino Physics
- 2. J. F. Donoghue, E. Golowich and B. R. Holstein: Dynamics of the Standard Model
- 3. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume I: Electroweak Interactions, the 'New Particles' and the Parton Model
- 4. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 2: CP-Violation, QCD and Hard Processes
- 5. C. Grupen: Particle Detectors
- 6. H. Grosse and A. Martin: Particle Physics and the Schrödinger Equation
- 7. B. Andersson: The Lund Model
- 8. R. K. Ellis, W. J. Stirling and B. R. Webber: QCD and Collider Physics
- 9. I. I. Bigi and A. I. Sanda: CP Violation
- 10. A. V. Manohar and M. B. Wise: Heavy Quark Physics
- 11. R. K. Bock, H. Grote, R. Frühwirth and M. Regler: *Data Analysis Techniques for High-Energy Physics, Second edition*
- 12. D. Green: The Physics of Particle Detectors
- 13. V. N. Gribov and J. Nyiri: Quantum Electrodynamics
- 14. K. Winter (ed.): Neutrino Physics, Second edition
- 15. E. Leader: Spin in Particle Physics
- 16. J. D. Walecka: Electron Scattering for Nuclear and Nucleon Structure
- 17. S. Narison: QCD as a Theory of Hadrons
- 18. J. F. Letessier and J. Rafelski: Hadrons and Quark-Gluon Plasma
- 19. A. Donnachie, H. G. Dosch, P. V. Landshoff and O. Nachtmann: Pomeron Physics and QCD
- 20. A. Hofmann: The Physics of Synchrotron Radiation
- 21. J. B. Kogut and M. A. Stephanov: The Phases of Quantum Chromodynamics

Cambridge University Press & Assessment 978-1-009-29031-9 — QCD as a Theory of Hadrons Stephan Narison Frontmatter <u>More Information</u>

QCD AS A THEORY OF HADRONS From Partons to Confinement

STEPHAN NARISON

Laboratoire de Physique Mathématique et Théorique Université de Montpellier II

Cambridge University Press & Assessment 978-1-009-29031-9 — QCD as a Theory of Hadrons Stephan Narison Frontmatter <u>More Information</u>

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781009290319

DOI: 10.1017/9781009290296

© Stephan Narison 2022

This work is in copyright. It is subject to statutory exceptions and to the provisions of relevant licensing agreements; with the exception of the Creative Commons version the link for which is provided below, no reproduction of any part of this work may take place without the written permission of Cambridge University Press.

An online version of this work is published at doi.org/10.1017/9781009290296 under a Creative Commons Open Access license CC-BY-NC-ND 4.0 which permits re-use, distribution and reproduction in any medium for non-commercial purposes providing appropriate credit to the original work is given. You may not distribute derivative works without permission. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/4.0

All versions of this work may contain content reproduced under license from third parties. Permission to reproduce this third-party content must be obtained from these third-parties directly.

When citing this work, please include a reference to the DOI 10.1017/9781009290296

First published 2005 Reissued as OA 2022

A catalogue record for this publication is available from the British Library.

ISBN 978-1-009-29031-9 Hardback ISBN 978-1-009-29033-3 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-1-009-29031-9 — QCD as a Theory of Hadrons Stephan Narison Frontmatter <u>More Information</u>

To Larry and Rindra

Cambridge University Press & Assessment 978-1-009-29031-9 — QCD as a Theory of Hadrons Stephan Narison Frontmatter <u>More Information</u>

Contents

	About Stephan Narison						
	Outline of the book						
	Pr	eface			xxix		
	Ac	know	ledgem	ents	xxxii		
Part I	Ge	eneral	l introd	luction	1		
	1	A sh	ort flas	h on particle physics	3		
	2 The pre-QCD era				10		
		2.1	The qu	uark model	10		
		2.2	Curren	nt algebras	13		
			2.2.1	Currents conservation	13		
			2.2.2	Currents and charges	13		
			2.2.3	Chiral symmetry and pion PCAC	15		
			2.2.4	Soft pion theorem and the Goldberger-Treiman			
				relation	16		
			2.2.5	The Adler–Weisberger sum rule and soft pion			
				theorems	17		
			2.2.6	Soft pion theorem for $\rho \to \pi^+\pi^-$ and the KSFR			
				relation	19		
			2.2.7	Weinberg current algebra sum rules	21		
				The DMO sum rules in the $SU(3)_F$ symmetry limit	22		
			2.2.9	π^+ - π^0 mass difference	24		
		2.3	Parton	model and Bjorken scaling	24		
		2.4	The S-	-matrix approach and the Veneziano model	27		
			2.4.1	The S-matrix approach	27		
			2.4.2	The Veneziano model and duality	27		
			2.4.3	Duality diagrams	28		
	3	The	QCD st	tory	31		
		3.1	QCD a	and the notion of quarks	31		
		3.2	The no	ption of colours	33		
		3.3	The co	onfinement hypothesis	34		
		3.4	Indire	ct evidence of quarks	34		

© in this web service Cambridge University Press & Assessment

viii			Contents	
		3.5 Evide	ence for colours	35
		3.6 The S	$SU(3)_c$ colour group	37
		3.7 Asym	ptotic freedom	38
		3.8 Quan	tum mechanics and non-relativistic aspects of QCD	39
	2	Field theor	y ingredients	40
		4.1 Wick	's theorem	40
		4.2 Time-	-ordered product	41
		4.3 The <i>S</i>	'-matrix	42
		4.3.1	Generalities	42
		4.3.2	Applications: cross-section and decay rate	42
		4.4 Reduc	ction formula	44
		4.5 Path i	ntegral in quantum mechanics	45
		4.5.1	Transition matrix of quantum mechanics in one	
			dimension	45
		4.5.2	The Green's functions	48
			Euclidean Green's function	50
			ntegral in quantum field theory	50
			Scalar field quantization	50
			Application to $\lambda \phi^4$ theory	51
			Fermion field quantization	53
			Gauge field quantization	53
Part II	-	D gauge the	•	55
	5		nd gauge invariance	57
		5.1 Introdu		57
			tion of gauge invariance	58
			ED Lagrangian as a prototype	58
		-	CD Lagrangian	60
	-		nvariance and BRST transformation	61
	6	-	using path integral	63
			tegral technique for QCD	63
		•	an rules from the path integral	65
			Free-field propagators	65
			Vertices	66
		-	zation of QED	68
	7	-	tive feature of quantization	68 70
	7		global invariance	70
		-	Obal invariance	70
Dowt III	M		$L \times SU(n)_R$ global chiral symmetry	71
Part III	IV I	Introduction	QCD and QED	73 74
	ç		regularization	74 76
	8		regularization	76 76
		8.1 On som	ne other types of regularization	76

			Contents	ix
		8.1.1	Pauli–Villars regularization	76
		8.1.2	Analytic regularization	76
		8.1.3	Lattice regularization	77
	8.2	Dimens	sional regularization	77
		8.2.1	Naïve dimensional regularization (NDR)	77
		8.2.2	Dimensional reduction for supersymmetry	78
		8.2.3	't Hooft-Veltman regularization (HV)	78
		8.2.4	Momentum integrals in <i>n</i> dimensions	79
		8.2.5	Example of the pseudoscalar two-point	
			correlator	81
9	The \overline{M}	S renorm	nalization scheme	84
	9.1	Renorm	nalizability and power counting rules	84
	9.2	The QC	CD Lagrangian counterterms	86
	9.3	Dimens	sional renormalization	86
	9.4	Renorm	nalization constants	87
	9.5	Check	of the renormalizability of QCD	89
10	Renor	malizatio	n of operators using the background field method	91
	10.1	Outline	of the background field approach	91
	10.2	On the	UV divergences and β -function calculation	93
	10.3	Renorm	nalization of composite operators	93
		10.3.1	The vector and axial-vector currents	94
		10.3.2	Renormalization of $G_{\mu\nu}G^{\mu\nu}$	94
		10.3.3	Renormalization of the axial anomaly	96
		10.3.4	Renormalizations of higher-dimension	
			operators	97
11	The re	normaliz	ation group	98
	11.1	The ren	normalization group equation	99
	11.2	The β f	function and the mass anomalous dimension	99
	11.3	Gauge	invariance of $\beta(\alpha_s)$ and γ_m in the \overline{MS} scheme	101
	11.4	Solutio	ns of the RGE	102
	11.5	Weinbe	erg's theorem	104
	11.6	The RC	GE for the two-point function in the \overline{MS} scheme	104
	11.7	Runnin	g coupling	106
		11.7.1	Lowest order expression and the definition of	
			the QCD scale Λ	106
		11.7.2	Renormalization group invariance of the first	
			two coefficients of β	107
		11.7.3	Higher order expression	108
	11.8	Decoup	ling theorem	109
	11.9	Input v	alues of α_s and matching conditions	109
	11.10	Runnin	g gauge	110
	11.11	Runnin	g masses	111

x				Contents	
		11.12	The per	turbative pole mass	112
			11.12.1	-	117
		11.13	Alterna	tive definitions to the pole mass	118
		11.14	\overline{MS} sch	eme and RGE for the pseudoscalar two-point	
			correlat	or	118
			11.14.1	Lowest order perturbative calculation	119
			11.14.2	Two-loop perturbative calculation in the	
				\overline{MS} scheme	120
	12	Other	renormali	zation schemes	123
		12.1	The MS	5 scheme	123
		12.2	The mo	mentum subtraction scheme	124
		12.3	The We	inberg renormalization scheme	125
		12.4	The BL	M scheme	125
				S optimization scheme	127
				ective charge (ECH) scheme	129
	13		cheme for		131
		13.1		D Lagrangian	131
		13.2		alization constants and RGE	131
				on, running coupling and anomalous dimensions	132
		13.4		e charge and link between the <i>MS</i> and on-shell	
			scheme		132
	14	-	-	low-energy QED tests	135
		14.1	-	ton anomaly	135
			14.1.1	The electron anomaly and measurement of fine	
				structure constant α	135
			14.1.2	The muon anomaly and the rôle of the hadronic	100
			1410	contributions	136
			14.1.3	The lowest order hadronic contributions	137
			14.1.4	e	141
			14.1.5	The total theoretical contributions to a_{μ}	143
		14.0	14.1.6	The τ anomaly	144
		14.2		igh-precision low-energy tests of QED	144
			14.2.1		144
				QED running coupling $\alpha(M_Z)$	145
		14.2	14.2.3 Conclus	Muonium hyperfine splitting	146 148
Dort IV	Dar	14.3			148 149
Part IV	15	-		erings at hadron colliders elastic scattering	149
	15	15.1	Introduct	e	151
		15.1		for free fields at short distance	151
		1.J.4	THE OF E	ior new at short distance	154

		Contents	xi
	15.3	Application of the OPE for free fields: parton model and	
		Bjorken scaling	153
	15.4	Light-cone expansion in $\phi_6^3(x)$ theory and operator twist	158
16	Unpo	larized lepton-hadron scattering	160
	16.1	Moment sum rules	160
	16.2	RGE for the Wilson coefficients	164
	16.3	Anomalous dimension of the non-singlet structure	
		functions	164
	16.4	Strategy for obtaining the Wilson coefficients	167
		16.4.1 Non-singlet part of the Bjorken sum rule	167
		16.4.2 Callan–Gross scaling violation	169
	16.5	Singlet anomalous dimensions and moments	171
17	The A	Altarelli–Parisi equation	174
	17.1	8	174
	17.2	8	175
	17.3		176
	17.4	1	177
18	More	on unpolarized deep inelastic scatterings	180
	18.1	8	180
	18.2	End points behaviour and the BFKL pomeron	180
		18.2.1 The limit $x \to 1$	180
		18.2.2 The limit $x \to 0$ for the non-singlet case	181
		18.2.3 The limit $x \to 0$ for the singlet case and the	
		BFKL pomeron	181
	18.3	1 1	182
	18.4	Neutrino scattering sum rules	185
	18.5	Summary of α_s measurements from DIS	187
19		ized deep-inelastic processes	188
	19.1	The case of massless quarks	188
	19.2	1	188
	19.3		190
		19.3.1 Polarized Bjorken sum rule	190
		19.3.2 Semi-inclusive polarized <i>ep</i> scattering	190
	19.4	Reprinted paper	192
		1. Introduction	192
		2. The first moment sum rule for g_1^p	195
		3. QCD spectral sum rule estimate of $\chi'(0)$	199
		4. Tests of the Bjorken sum rule and estimate of	
		higher twist effects	205
		5. Further discussion	206

xii			Contents	
	20	Drell-	-Yan process	216
			Kinematics	216
			Parton model	217
			20.2.1 Cross-section	217
			20.2.2 Approximate rules	218
		20.3	Higher order corrections to the cross-section	218
			The K factor	220
	21	One 'r	prompt photon' inclusive production	221
Part V	Ha		esses in e^+e^- collisions	223
		Introd		224
	22	One ha	adron inclusive production	225
		22.1	Process and fragmentation functions	225
		22.2	Inclusive density, correlations and hadron multiplicity	226
		22.3	Parton model and QCD description	227
	23	$\gamma\gamma$ sca	atterings and the 'spin' of the photon	232
		23.1	OPE and moment sum rules	232
		23.2	Unpolarized photon structure functions	234
		23.3	Polarized process: the 'spin' of the photon	235
			23.3.1 Moments and cross-section	235
			23.3.2 The g_1^{γ} sum rule and the axial anomaly	236
	24	QCD j	jets	241
		24.1	Introduction	241
		24.2	IR divergences: Bloch–Nordsieck and KLN theorems	241
			Two-jet events	244
		24.4	Three-jet events	246
			24.4.1 Thrust as a jet observable	247
			24.4.2 Other event-shape variables	248
			24.4.3 Event-shape distributions	249
			24.4.4 Energy-energy correlation	250
			24.4.5 Jade and Durham algorithms	251
			QCD tests from jet analysis	252
			Jets from heavy quarkonia decays	253
	~ ~	24.7	Jets from ep , $\bar{p}p$ and pp collisions	255
	25		inclusive hadron productions	256
			Heavy quarkonia OZI-violating decays	256
			Alternative extractions of α_s from heavy quarkonia	258
			$e^+e^- \rightarrow$ hadrons total cross-section	259
			$Z \rightarrow hadrons$	262
		25.5	Inclusive semi-hadronic τ decays	263
		05 C	25.5.1 Running of α_s below the τ -mass	270
		25.6	Some other τ -like processes	271
			25.6.1 α_s from other τ widths	271

				Contents	xiii
			25.6.2	α_s from $e^+e^- \rightarrow I = 1$ hadrons data	272
			25.6.3	Strange quark mass from τ -like processes	273
Part VI	Su	nmary	of QCE	tests and α_s measurements	275
		VI.1	The dif	ferent observables	276
		VI.2	Differe	nt tests of QCD	276
			VI.2.1	Deep inelastic scatterings	276
			VI.2.2	QCD jets	277
		VI.3	Summa	ry of the α_s determinations	277
Part VII	Pov	wer coi	rections	s in QCD	283
	26	Intro	luction		285
	27	The S	SVZ expa	ansion	287
				atomy of the SVZ expansion	287
		27.2	SVZ ex	pansion in the $\lambda \phi^4$ model	288
		27.3	Renorm	nalization group invariant (RGI) condensates	290
			27.3.1	Scale invariant $D = 4$ condensates	290
				D = 5 mixed quark-gluon condensate	292
			27.3.3	D = 6 gluon condensates	293
				D = 6 four-quark condensates	294
			27.3.5	Higher dimensions gluonic condensates	295
			27.3.6	Relations among the different condensates	296
			27.3.7	Non-normal ordered condensates and	
				cancellation of mass singularities	297
	28	Tech	-	for evaluating Wilson coefficients	299
		28.1	Fock-S	chwinger fixed-point technology	299
				Fock-Schwinger gauge	299
			28.1.2	Gluon fields and condensates	299
			28.1.3	Light quark fields and condensates	301
				Mixed quark-gluon condensate	301
			28.1.5	Gluon propagator	302
			28.1.6	Quark propagator	302
		28.2		ation of the Fock–Schwinger technology to the	
			light qu		
			pseudo	scalar two-point correlator	303
			28.2.1	Quark condensate $\langle : \bar{\psi}\psi : \rangle$	304
			28.2.2	Gluon condensate $\langle : \alpha_s G^2 : \rangle$	305
			28.2.3	Mixed quark-gluon condensate	306
			28.2.4	1	307
			28.2.5	Triple gluon condensate	308
		28.3		chwinger technology for heavy quarks	308
			28.3.1	General procedure	308
			28.3.2	D = 4 gluon condensate of the electromagnetic	
				correlator	309

Cambridge University Press & Assessment 978-1-009-29031-9 — QCD as a Theory of Hadrons Stephan Narison Frontmatter <u>More Information</u>

xiv

Contents

			28.3.3	D = 6 condensates of the electromagnetic	
				correlator	310
			28.3.4	Matching the heavy and light quark expansions	311
			28.3.5		312
		28.4	The pla	ne wave method	313
		28.5	On the o	calculation in a covariant gauge	314
	29	Renor	malons		315
			Introduc		315
		29.2	Converg	gence of the Borel integral	317
				rel plane in QCD	318
		29.4	IR renor	rmalons	318
				ormalons	321
		29.6		henomenology in the large β -limit	322
				The <i>D</i> -function	322
				Semi-hadronic inclusive τ decays	323
				corrections for jet shapes	324
		29.8		corrections in deep inelastic scattering	325
			29.8.1	Drell–Yan process	325
				Non-singlet proton structure functions F_2	326
			29.8.3	Gross–Llewellyn Smith and polarized Bjorken	
			_	sum rules	326
				corrections to the heavy quark pole mass	327
	30	•		Z expansion	329
		30.1	•	nic gluon mass	329
		30.2	Instanto		331
				't Hooft instanton solution	331
				Instanton phenomenology	333
				Dilute gas approximation	333
		20.2		The instanton liquid model	335
D 4 1/111	00	30.3		measurements of power corrections	336
Part VIII	-		-	inctions	341
	31		-	ide to original works	343
				magnetic current	343
				o)scalar and (axial-)vector currents	343
		51.5		mass corrections to the (pseudo)scalar and	242
		31.4		-vector quark correlators	343
		51.4	-	onic gluon corrections to the (pseudo)scalar and -vector quark correlators	344
		31.5		quark correlators	344 344
		31.5		hic correlators	344 344
		31.0	•		344 344
		51.7	rour-q	uark correlators	544

		Contents	XV
	31.8	Gluonia correlators	344
	31.9	Hybrid correlators	344
32	(Pseu	do)scalar correlators	345
	32.1	Exact two-loop perturbative expression in the \overline{MS}	
		scheme	345
	32.2	Three-loop expressions in the chiral limit	346
	32.3	Dimension-two	347
	32.4	Dimension-four	347
	32.5	Dimension-five	348
	32.6	Dimension-six	349
	32.7	Exact two-loop expression of the spectral function	349
	32.8	Heavy-light correlator	350
33	(Axia	l-)vector two-point functions	352
	33.1	Exact two-loop perturbative expression in the \overline{MS}	
		scheme	352
	33.2	Three-loop expression including the m^2 -terms	353
	33.3		354
		Dimension-five	356
		Dimension-six	356
	33.6	Vector spectral function to higher order	357
		33.6.1 Complete two-loop perturbative expression of	
		the spectral function	357
		33.6.2 Four-loop perturbative expression of the	
		spectral function	358
	33.7		359
	33.8	Beyond the SVZ expansion: tachyonic gluon contributions	
		to the (axial-)vector and (pseudo)scalar correlators	360
		33.8.1 Vector correlator	360
		33.8.2 (Pseudo)scalar correlator	361
34		pr-quark correlator	362
35	•	onic correlators	364
	35.1	Light baryons	364
		35.1.1 The decuplet	364
		35.1.2 The octet	365
	25.2	35.1.3 Radiative corrections	367
	35.2	Heavy baryons	367
		35.2.1 Spin 1/2 baryons	367
26	Eme	35.2.2 Spin 3/2 baryon	369
36		quark correlators	371
	36.1	Four-quark states	371
	36.2	$\Delta S = 1$ correlator and $\Delta I = 1/2$ rule	372

Cambridge University Press & Assessment 978-1-009-29031-9 — QCD as a Theory of Hadrons Stephan Narison Frontmatter <u>More Information</u>

xvi

Part

Contents

		36.3	The ΔS	S = 2 correlator	374
		36.4	The ΔI	B = 2 correlator	375
	37	Gluor	nia corre	lators	378
		37.1	Pseudo	scalar gluonia	378
		37.2	Pseudo	scalar meson-gluonium mixing	380
		37.3	Scalar g	gluonia	381
		37.4	Scalar	meson-gluonium mixing	381
		37.5	Scalar t	ri-gluonium correlator	382
		37.6	Scalar	di- and tri-gluonium mixing	382
		37.7	Tensor	gluonium	383
		37.8	Tensor	meson-gluonium mixing	383
		37.9	Contrib	outions beyond the OPE: tachyonic gluon mass	384
	38	Hybri	id correla	ators	386
		38.1	Light h	ybrid correlators	386
		38.2	Heavy	hybrid correlators	388
	39	Corre	lators in	<i>x</i> -space	389
		39.1	(Axial-)vector correlators	389
		39.2	(Pseudo	o)scalar correlators	390
IX	QC	D non	-perturb	pative methods	393
	40	Intro	luction		395
	41	Lattic	e gauge	theory	396
		41.1	Introdu	ction	396
		41.2	Gluons	on the lattice: the Wegner-Wilson action	397
		41.3	Quarks	on the lattice	399
		41.4	Quark a	and gluon interactions	402
		41.5	Some a	pplications of the lattice	404
			41.5.1	The QCD coupling and the weak coupling	
				regime	404
			41.5.2	Wilson loop, confinement and the strong	
				coupling regime	405
			41.5.3	Some other applications and limitations of the	
				lattice	407
	42	Chira	l perturb	ation theory	409
		42.1	Introdu	ction	409
		42.2	PCAC	relation from ChPT	410
		42.3	Current	t algebra quark mass ratios	413
		42.4	Chiral j	perturbation theory to order p^4	414
			42.4.1	The chiral Lagrangian to order (p^4)	414
			42.4.2	Chiral loops	414
			42.4.3	The non-Abelian chiral anomaly	416
		42.5	Some l	ow-energy phenomenology to order p^4	417
			42.5.1	Decay constants	418

			Contents	xvii
		42.5.2	Electromagnetic form factors	419
			K_{l3} decays	420
		42.5.4	Ratios of light quark masses to order p^4	421
43	Mode	els of the	QCD effective action	424
	43.1	Introdu	ction	424
	43.2	QCD in	the large– N_c limit	425
		43.2.1	Large N_c counting rules for mesons	425
		43.2.2	Chiral Lagrangian in the large N_c -limit	426
		43.2.3	Minimal hadronic ansatz to large N_c QCD	427
		43.2.4	Baryons in the large N_c limit	430
	43.3	Lowest	meson dominance models	431
	43.4	The con	nstituent chiral quark model	432
	43.5	Effectiv	ve action approach models	433
	43.6	The Ex	tended Nambu–Jona-Lasinio Model	434
44	Heav	y quark e	effective theory	442
	44.1	Introdu	ction	442
	44.2	Heavy-	quark symmetry	442
	44.3	Heavy	quark effective theory	443
		44.3.1	Introduction	443
		44.3.2	The HQET Lagrangian	444
		44.3.3	Symmetries of the Lagrangian	447
		44.3.4	Heavy quark wave-function renormalization in	
			HQET	448
		44.3.5	Residual mass term and definition of the heavy	
			quark mass	449
	44.4	Hadron	spectroscopy from HQET	450
	44.5	The \overline{B}	$\rightarrow D^* l \bar{\nu}$ exclusive process	452
		44.5.1	Semi-leptonic form factors: the Isgur-Wise	
			function	452
		44.5.2	The Luke's theorem for the $1/m_Q$ corrections	455
		44.5.3	Short-distance corrections and matching	
			conditions	456
			Determination of $ V_{cb} $ from HQET	457
	44.6	The inc	clusive $\bar{B} \to X l \bar{\nu}$ weak process	458
	44.7	Rare B	decays and CP-violation	462
45	Poter	tial appr	oaches to quarkonia	464
	45.1	The Sc	hrödinger equation	464
	45.2	-	CD static Coulomb potential	465
	45.3	Potenti	al models	468
		45.3.1	Cornell potential	468
		45.3.2	Richardson potential	468
		45.3.3	Martin potential	468

xviii

Cambridge University Press & Assessment 978-1-009-29031-9 — QCD as a Theory of Hadrons Stephan Narison Frontmatter More Information

> 45.4 OCD corrections to the static Coulomb potential: Leutwyler-Voloshin model 469 45.4.1 Relativistic corrections 469 45.4.2 Radiative and non-perturbative corrections 471 45.4.3 Validity range 472 45.4.4 Some phenomenological applications 472 Bell-Bertlmann equivalent potentials 473 45.5 Stochastic vacuum model 474 45.6 4561 The model 475 45.6.2 Application to the static potential 477 Non-relativistic effective theories for quarkonia 479 45.7 46 On monopole and confinement 484 Part X QCD spectral sum rules 487 47 Introduction 489 48 Theoretical foundations 491 Generalities and dispersion relations 48.1 491 48.2 Explicit derivation of the dispersion relation 492 48.3 General proof of the dispersion relation 494 48.4 The QCD side of the sum rules 496 49 Survey of OCD spectral sum rules 499 49.1 Moment sum rules in QCD 499 49.2 Laplace sum rule (LSR) 500 49.3 Ratio of moments 501 49.4 Finite energy sum rule (FESR) 503 49.5 Features of FESR and an example 504 49.6 The Gaussian sum rules 505 49.7 FESR from the zeta prescription 508 49.8 Analytic continuation 508 49.9 Summary 509 49.10 Optimization criteria 509 49.10.1 The harmonic oscillator 510 49.10.2 Non-relativistic charmonium sum rules 511 49.10.3 Implications for QCD 512 49.11 Modelling the $e^+e^- \rightarrow I = 1$ hadrons data using a 513 QCD-duality ansatz 49.12 Test of the QCD-duality ansatz in the charmonium sum rules 513 49.13 HOET sum rules 515 49.13.1 Decay constant, meson-quark mass gap, 516 kinetic energy and chromomagnetic operator 49.13.2 Isgur–Wise function 518 49.14 Vertex sum rules and form factors 518

Contents

Contents					
		49.14.1	Spectral representation	519	
			Illustration from the evaluation of the $g_{\omega\rho\pi}$	017	
		.,	coupling	520	
	49.15	Light-con	ne sum rules	522	
			Basics and illustration by the $\pi^0 \rightarrow \gamma^* \gamma^*$	-	
			process	522	
		49.15.2	Distribution amplitudes	525	
50	Wein		MO sum rules	527	
	50.1		ct Weinberg sum rules (WSR) in the chiral		
		limit	-	527	
		50.1.1 7	The sum rules	528	
		50.1.2 N	Matching between the low- and high-energy		
			egions	528	
	50.2	$L_{10}, m_{\pi^{\pm}}$	$-m_{\pi^0}$ and f_{π} in the chiral limit	530	
	50.3	Masses ar	nd power corrections to the Weinberg sum rules	531	
	50.4	DMO sur	n rules in QCD	532	
51	The (CD coupli	$\log \alpha_s$	533	
	51.1	α_s from <i>e</i>	$^+e^- \rightarrow I = 1$ hadrons and τ -decays data	533	
	51.2	α_s from h	eavy quarkonia mass-splittings	534	
	51.3	Reprinted	l paper	535	
			The double ratio of moments	535	
			Test of the $1/m$ -expansion	537	
		3. E	Balmer-mass formula from the ratio of		
			noments	537	
			$S_1^3 - S_0^1$ hyperfine and $P - S$ -wave splittings	539	
			Leptonic width and quarkonia wave function	540	
			Gluon condensate from $M_{\psi}(s_1^3) - M_{\eta_c}(s_0^1)$	541	
			Charmonium <i>P</i> -wave splittings	542	
			x_s from the $P_1^1 - P_1^3$ axial mass splitting	544	
			$\mathbf{\hat{\Gamma}} - \eta_b$ mass splitting	544	
			$\Upsilon - \chi_b$ mass splittings and new estimate of	- 1-	
			he gluon condensate	545	
			Jpdate average value of $\langle \alpha_s G^2 \rangle$	546	
			Foponium: illustration of the infinite mass limit	546	
			Conclusions	547	
50	The (edgements	547	
52		CD conde		550 550	
	52.1 52.2		n-two tachyonic gluon mass	550 551	
	52.2 52.3		n-three quark condensate n-four gluon condensate	551	
	52.5 52.4		on-five mixed quark-gluon condensate	553	
	52.4 52.5		on-six four-quark condensates	553	
	54.5	DIMENSIO	ni-six ioui-quaix conucilsates	555	

XX	Contents		
52.6	Dimension-six gluon condensates	555	
52.7	-	555	
52.8	Instanton like-contributions		
52.9			
•=	$e^+e^- \rightarrow I = 1$ hadrons and τ decays		
52.10	Reprinted paper	557 557	
	1. Introduction	557	
	2. α_s from $e^+e^- \rightarrow I = 1$ hadrons data	558	
	3. The condensates from τ -like decays	561	
	4. The condensates from the ratio of the Laplace		
	sum rules	564	
	5. Instanton contribution	566	
	6. Test of the size of the $1/M_{\tau}^2$ -term	566	
	7. Sum of the non-perturbative corrections to R_{τ}	567	
	8. Implication on the value of α_s from R_{τ}	568	
	9. Conclusion	569	
	Acknowledgements	570	
53 Light	and heavy quark masses, etc.	572	
53.1		572	
53.2	Quark mass definitions and ratios of light quark masses	573	
53.3	Bounds on the light quark masses	574	
	53.3.1 Bounds on the sum of light quark masses from		
	pseudoscalar channels	574	
	53.3.2 Lower bound on the light quark mass		
	difference from the scalar sum rule	578	
	53.3.3 Bounds on the sum of light quark masses from		
	the quark condensate and $e^+e^- \rightarrow I = 0$		
	hadrons data.	578	
53.4	Sum of light quark masses from pseudoscalar sum rules	580	
	53.4.1 The (pseudo)scalar Laplace sum rules	580	
	53.4.2 The $\bar{u}d$ channel	582	
	53.4.3 The $\bar{u}s$ channel and QSSR prediction for the		
	ratio $m_s/(m_u+m_d)$	584	
53.5	Direct extraction of the chiral condensate $\langle \bar{u}u \rangle$	585	
53.6	Final estimate of $(m_u + m_d)$ from QSSR and		
	consequences on m_u , m_d and m_s	586	
53.7	Light quark mass from the scalar sum rules	587	
	53.7.1 The scalar $\bar{u}d$ channel	587	
	53.7.2 The scalar $\bar{u}s$ channel	588	
53.8	Light quark mass difference from $(M_{K^+} - M_{K^0})_{\text{QCD}}$	588	
53.9	The strange quark mass from e^+e^- and τ decays	588	
	53.9.1 $e^+e^- \rightarrow I = 0$ hadrons data and the ϕ -meson		
	channel	588	

		Contents					
		53.9.2	Tau decays	589			
			Summary for the estimate of light quark masses	590			
53	.10		onstants of light (pseudo)scalar mesons	591			
00	.10	53.10.1 Pseudoscalar mesons					
		53.10.2		591 593			
53	.11		preaking of the quark condensates	594			
		53.11.1	SU(3) corrections to kaon PCAC	594			
		53.11.2		597			
		53.11.3	$\langle \bar{s}s \rangle / \langle \bar{u}u \rangle$ from the (pseudo)scalar sum rules	598			
		53.11.4	$\langle \bar{s}s \rangle / \langle \bar{u}u \rangle$ from the B_s meson	598			
		53.11.5	Final sum rule estimate of $\langle \bar{s}s \rangle / \langle \bar{u}u \rangle$	599			
		53.11.6	SU(2) breaking of the quark condensate	599			
53	.12	Heavy qu	lark masses	599			
		53.12.1	The quarkonia channel	600			
		53.12.2	The heavy-light D and B meson channels	602			
53	.13	The weak	c leptonic decay constants $f_{D_{(s)}}$ and $f_{B_{(s)}}$	607			
		53.13.1	Upper bound on the value of f_D	608			
		53.13.2	Estimate of the <i>D</i> decay constant f_D	609			
		53.13.3	Ratio of the decay constants f_{D_s}/f_D and f_{B_s}/f_B	610			
		53.13.4	Estimate of the <i>B</i> decay constant f_B	612			
		53.13.5	Static limit and $1/M_b$ -corrections to f_B	612			
	.14	Conclusio		614			
		n spectros		615			
		Light $\bar{q}q$		615			
		Light bar	•	615			
5	4.3	-	copy of the heavy-light hadrons	618			
		54.3.1	Beautiful mesons	618			
-		54.3.2	Baryons with one heavy quark	618 620			
-	4.4						
	4.5	Mass splittings of heavy quarkonia					
_	4.6	Gluonia spectra					
5	4.7		scalar gluonia	622 622			
			Masses and decay constants π_{-} and π'_{-} accuplings to $\pi\pi_{-}$	622			
			σ_B and σ'_B couplings to $\pi\pi$ G(1.5) coupling to $\eta\eta'$	624			
			$\sigma'_B(1.37)$ coupling to $\eta\eta$ $\sigma'_B(1.37)$ and $G(1.5)$ couplings to 4π	625			
			σ_B, σ'_B and G couplings to $\gamma \gamma$	626			
			$J/\psi \rightarrow \gamma S$ radiative decays	627			
			$\phi \rightarrow \sigma_B \gamma$ and $D_s \rightarrow \sigma_B l \nu$ decays	628			
5	4.8		$p \rightarrow 0 B \gamma$ and $D_s \rightarrow 0 B \gamma 0 cours$	628			
	4.9	*					
5		-	Nature of the σ and $f_0(0.98)$	629 629			
			Nature of the $f_0(1.37)$, $f_0(1.5)$ and $f_J(1.7)$	629			

xxii

Cambridge University Press & Assessment 978-1-009-29031-9 — QCD as a Theory of Hadrons Stephan Narison Frontmatter <u>More Information</u>

> Contents 54.10 Mixing and decays of the tensor gluonium 631 54.11 Mixing and decays of the pseudoscalar gluonium 632 Test of the four-quark nature of the $a_0(980)$ 632 54.12 54.13 Light hybrids 634 54.13.1 Spectra 635 54.13.2 Decay widths of the $\tilde{\rho}$ 635 54.14 Heavy hybrids 636 54.14.1 Conclusions 636 55 D, B and B_c exclusive weak decays 638 Heavy to light exclusive decays of the B and D mesons 638 55.1 55.1.1 Introduction and notations 638 55.1.2 Estimate of the form factors and of V_{ub} 641 $SU(3)_F$ breaking in $\bar{B}/D \to K l \bar{\nu}$ and 55.1.3 determination of V_{cd}/V_{cs} and V_{cs} 643 Large M_b -limit of the form factors 643 55.1.4 55.1.5 q^2 -behaviour of the form factors 644 55.2 Slope of the Isgur–Wise function and value of V_{cb} 645 $B^*(D^*) \to B(D) \pi(\gamma)$ couplings and decays 55.3 649 Weak semi-leptonic decays of the B_c mesons 650 55.4 55.4.1 Anomalous thresholds 652 56 $B^0_{(s)}$ - $\overline{B}^0_{(s)}$ mixing, kaon CP violation 654 56.1 Standard formalism 654 Phenomenology of B^0 - \overline{B}^0 and K^0 - \overline{K}^0 mixings 56.1.1 654 56.1.2 The Bell-Steinberger unitarity constraint 657 56.1.3 $K \rightarrow 2\pi$ amplitudes 659 56.2 $B_{(s)}^0 - \bar{B}_{(s)}^0$ mixing 664 56.2.1 Introduction 664 Two-point function sum rule 56.2.2 665 Results and implications on $|V_{ts}|^2/|V_{td}|^2$ and 56.2.3 ΔM_s 667 56.2.4 Conclusions 668 The $\Delta S = 2$ transition of the $K^0 - \bar{K}^0$ mixing 56.3 668 56.3.1 Estimate of the bag constant B_K 668 56.3.2 Estimate of the CP violation parameters $(\bar{\rho}, \bar{\eta})$ 668 56.4 Kaon penguin matrix elements and ϵ'/ϵ 669 56.4.1 SM theory of ϵ'/ϵ 669 56.4.2 Soft pion and kaon reductions of $\langle (\pi\pi)_{I=2} | \mathcal{Q}_{7,8}^{3/2} | K^0 \rangle$ to vacuum condensates 673 The $\langle \mathcal{O}_{7,8}^{3/2} \rangle$ condensates from DMO-like sum 56.4.3 rules in the chiral limit 674 The $\langle \mathcal{O}_{7,8}^{3/2} \rangle$ condensates from hadronic tau 56.4.4 inclusive decays 676

	Contents						
			56.4.5	Impact of the results on the CP violation			
				parameter ϵ'/ϵ	679		
			56.4.6	680			
	57	Ther	nal behavi	681			
		57.1	The QCI	D phases	681		
		57.2	Big-bang	y versus heavy ion collisions	682		
		57.3	Hadronio	c correlations at finite temperature	682		
		57.4	Asympto	tic behaviour of the correlator in hot hadronic			
			matter	matter			
		57.5	Quark co	ondensate at finite T	686		
		57.6	f_{π} at find	690			
		57.7	ondensate	690			
		57.8	Four-qua	ark condensate	690		
		57.9	The ρ -m	eson spectrum in hot hadronic matter	691		
		57.10		coupling and width	693		
		57.11	Deconfir	nement phase and chiral symmetry restoration	694		
		57.12	Hadronic	e couplings	694		
		57.13	Nucleon	sum rules and neutron electric dipole			
			moment		695		
	58	More	-	al sum rules	696		
		58.1		her applications in QCD	696		
		58.2		reak models with dynamic symmetry breaking	696		
		Epilogue			697		
Part XI		pendic			699		
	А	•		nts and units	701		
		A.1	-	rgy physics conversion constants and units	701		
			-	rgy physical constants	701		
				ak mixing matrix	702		
	ъ			rophysical constants	703		
	В	-		for $SU(N)_c$	704		
		B.1	Definition		704		
		B.2	-	epresentation of the gluon fields	704		
		B.3		ntal representation of the quark fields	705		
	С	B.4		of $SU(3)_c$ d momenta	705 707		
	-						
	D	Dirac D.1	-	and matrices n and notations	709 709		
		D.1 D.2		sformations	710		
		D.2 D.3	Polarizati		710		
		D.3 D.4	Fierz idei		710		
		D.4 D.5		ebra in <i>n</i> -dimensions	711		
		D.5 D.6	-	ly anti-symmetric tensor	713		
		2.0	ane total		115		

xxiv

Cambridge University Press & Assessment 978-1-009-29031-9 — QCD as a Theory of Hadrons Stephan Narison Frontmatter <u>More Information</u>

> Contents E Feynman rules 714 Factors induced by external or internal lines 714 E.1 E.2 Factors induced by closed loops 714 E.3 Propagators and vertices 715 E.4 Composite operators in deep-inelastic scattering 716 E.5 Rules in the background field approach 717 F Feynman integrals 719 F.1 Feynman parametrization 719 F.1.1 Schwinger representation 719 F.1.2 Original Feynman parametrization 719 The Γ function F.2 720 The beta function B(x, y)721 F.3 F.4 The incomplete beta function $B_a(x, y)$ 722 F.5 The hypergeometric function $_2F_1(a, b, c; z)$ 722 F.6 One-loop massless integrals 722 Two- and three-loop massless integrals 724 F.7 F.8 One-loop massive integrals 726 F.9 A two-loop massive integral 727 F.10 The dilogarithm function 728 F.11 Some useful logarithmic integrals 729 F.12 Further useful functions 731 G Useful formulae for the sum rules 732 G.1 Laplace sum rule 732 G.2 733 Finite energy sum rule G.3 Coordinate space integrals 733 G.4 Cauchy contour integrals 733 735 **Bibliography** Index 773

Cambridge University Press & Assessment 978-1-009-29031-9 — QCD as a Theory of Hadrons Stephan Narison Frontmatter <u>More Information</u>

About Stephan Narison

He is, at present, a Directeur de Recherche at the French 'Centre National de la Recherche Scientifique' (CNRS) in theoretical physics (section of high-energy elementary particle physics) at the 'Laboratoire de Physique Mathématique et Théorique de l'Université de Montpellier II' (France). He is the founder and chairman of the Series of Montpellier International Conference in Quantum ChromoDynamics (QCD) since 1985 which has been sponsored from 1996 to 2001 by the European Commission of Brussels.

He graduated at the Lycée Gallieni and University of Antananarivo (Madagascar) in 1972. After his master's degree, he was a teacher in different colleges of Antananarivo (Ambatonakanga, Esca and St Michel). In 1974, he obtained a fellowship from the 'Centre International des Etudiants et Stagiaires' of the European Commision of Brussels for preparing his Doctorat d'Etat at the University of Marseille (France). He was offered a 2-year postdoctoral position at the Abdus Salam Center for Theoretical Physics (former International Center for Theoretical Physics) in Trieste (Italy) from 1979 to 1981, a Scientific Associate position for 1 year at LAPP-Annecy (France) and a 2-year CERN (Geneva) fellowship in the Theory division in 1982. He obtained his permanent position in Montpellier in 1984. Since then, he has visited different world high-energy physics laboratories for the purpose of joint collaborations or by simple invitations. These include the traditional West European Universities and Institutes [Universities of Barcelona, Madrid, Valencia (Spain); University of Heidelberg (as a Von-Humboldt fellow), Munich (Germany), Vienna (Austria); CERN-Geneva, University of Bern (Switzerland); ICTP-Trieste, University of Pisa (Italy)], the Universities and Institutes of East European countries [University of Kracow (Poland), INR-Moscow (Russia)], the American Universities and Institutes [LBL (California), SLAC (Stanford), Brookhaven (Upton)] and the more exotic Asian Universities and Institutes [KEK-Tsukuba (Japan), KIAS-Seoul (Korea), NCTS-Hsinchu (Taiwan)]. He also participates actively in the creation of a new Theoretical Physics Institute in his home country. Finally, he is regularly invited to present contributions in the different large-scale, high-energy physics conferences (EPS, IHEP, ...) and specialized workshops.

His first research activity, which made him known in the field, was the estimate of the hadronic contributions to the anomalous magnetic moment of leptons (subject of his 3ème cycle thesis). Since then, his main research activity has been in the non-perturbative aspects of QCD using the method of QCD spectral sum rules for studying the properties of hadrons

Cambridge University Press & Assessment 978-1-009-29031-9 — QCD as a Theory of Hadrons Stephan Narison Frontmatter More Information

xxvi

About Stephan Narison

and low-energy phenomena. He has worked in this field since the date of its invention in 1979 and participates actively in its theoretical developments and new applications.

He is a member of the European Physical Society, a correspondant member of the 'Academie Nationale Malgache', a member of the New York Academy of Sciences, nominated in the Who's Who biography by the American Biographical Institute (ABI) (USA) and by the International Biographical Center of Cambridge (IBC) (UK), nominated among the 2000 exceptional men of the twentieth and twenty-first centuries by the ABI and the IBC. He has also been the President-Foundator of the 'Association Culturelle Malgache de Montpellier' (France) since 1993.