

Search Methods in Artificial Intelligence

Search Methods in Artificial Intelligence is designed to provide in-depth knowledge on how search plays a fundamental role in problem solving. The book is meant for undergraduate and graduate students pursuing courses in computer science and artificial intelligence. Starting with basic search, it covers a variety of complex algorithms designed for different kinds of problems. It demonstrates that search is all-pervasive in artificial intelligence and equips the reader with relevant skills.

The text begins with an introduction to search spaces that confront intelligent agents. It illustrates how basic algorithms like depth first search and breadth first search run into exponentially growing spaces. Discussions on heuristic search follow along with stochastic local search, algorithm A*, and problem decomposition. The role of search in playing board games, deduction in logic, automated planning, and machine learning is described next. The book concludes with a coverage of constraint satisfaction.

Deepak Khemani has been actively working in the field of artificial intelligence (AI) for over four decades – first as a student at Indian Institute of Technology (IIT) Bombay and then as a Professor in the Department of Computer Science and Engineering at IIT Madras. Currently he is Professor at Plaksha University, Mohali. He has three well-received courses on AI on SWAYAM, a MOOC platform launched by the Government of India. He is also the author of A First Course in Artificial Intelligence (2013).

Search Methods in Artificial Intelligence

Deepak Khemani

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781009284325

© Deepak Khemani 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2024

A catalogue record for this publication is available from the British Library

ISBN 978-1-009-28432-5 Hardback ISBN 978-1-009-28433-2 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Pretace		XI		
Acknowledgements			xiii	
1	Introduction			1
	1.1	Can M	Machines Think?	1
	1.2	Proble	em Solving	4
	1.3	Neura	l Networks	6
		1.3.1	Deep neural networks	8
	1.4	Symbo	olic AI	10
		1.4.1	Symbols, language, and knowledge	10
		1.4.2	Symbol systems	12
		1.4.3	An architecture for cognition	13
	1.5	The C	ore of Intelligence	14
		1.5.1	Remember the past and learn from it	15
		1.5.2	Understand and represent the present	18
		1.5.3	Imagine the future and shape it	23
	A No	ote for th	he Reader	26
	Exer	rcises		26
2	Search Spaces			29
	2.1	The St	tate Space	30
		2.1.1	Generate and test	31
	2.2	Search	n Spaces	32
	2.3	Config	guration Problems	33
		2.3.1	The map colouring problem	33
		2.3.2	The N-queens problem	34
		2.3.3	The SAT problem	35
	2.4		ing Problems	35
		2.4.1	The 8-puzzle	36
		2.4.2	River crossing puzzles	37
		2.4.3	The water jug problem	38
		2.4.4	The travelling salesman problem	39
	2.5	The So	olution Space	42
		2.5.1	Constructive methods	42
		2.5.2	Perturbative methods	43
	Summary			44
	Exer	rcises		44

vi Contents

3	Blin	nd Sear	rch	47	
	3.1	3.1 Search Trees			
	3.2	Depth	First Search	49	
		3.2.1	How to stop going around in circles	51	
		3.2.2	Reconstructing the path	53	
		3.2.3	The complete algorithm	55	
		3.2.4	Backtracking in DFS	57	
	3.3	Breadt	th First Search	58	
	3.4	Compa	aring DFS and BFS	60	
		3.4.1	Space complexity	61	
		3.4.2	Time complexity	62	
		3.4.3	Quality of solution	64	
		3.4.4	Completeness	64	
	3.5	Depth	First Iterative Deepening	64	
		3.5.1	Depth bounded depth first search	65	
		3.5.2	Depth first iterative deepening	66	
		3.5.3	Space complexity	67	
		3.5.4	Time complexity	67	
		3.5.5	Quality of solution	67	
		3.5.6	Completeness	69	
	3.6	Uninfo	ormed Search	70	
	Sum	Summary			
	Exer	rcises		72	
4	Heuristic Search			75	
	4.1		stic Functions	76	
		4.1.1	Map colouring	77	
		4.1.2	SAT	77	
		4.1.3	The 8-puzzle	77	
		4.1.4	Route finding	78	
		4.1.5	Travelling salesperson problem	80	
	4.2	Best F	First Search	81	
		4.2.1	Quality of solution	84	
		4.2.2	Completeness	85	
		4.2.3	Space complexity	85	
		4.2.4	Time complexity	86	
	4.3	Local	Search Methods	86	
		4.3.1	An optimization problem	87	
		4.3.2	Hill climbing	88	
		4.3.3	Completeness	89	
		4.3.4	Quality of solution	89	
		4.3.5	Time complexity	89	
		4.3.6	Space complexity	90	
	4.4	Heuris	stic Search Terrains	90	
		4.4.1	Hill climbing in the blocks world domain	90	
		4.4.2	Heuristic functions	91	
		443	The SAT landscape	05	

				Contents		vi
	4.5	Neighl	pourhood Functions			96
	1.5	4.5.1	Neighbourhood functions for the TSP			96
		4.5.2	Neighbourhood functions for SAT			98
		4.5.3	Variable neighbourhood descent			99
		4.5.4	Beam search			101
	4.6	Escapi	ng Local Optima			103
		4.6.1	Exploration versus exploitation			104
		4.6.2	Tabu search			104
		4.6.3	Iterated hill climbing			107
	Sum	mary				108
	Exer	cises				108
5	Sto	Stochastic Local Search				
	5.1	Climbi	ng Mount Improbable			116
		5.1.1	Random walk: pure exploration			117
		5.1.2	e e			117
		5.1.3	E			119
	5.2		ion: Survival of the Fittest			122
		5.2.1	Genetic algorithms: churning in a population of candidates			125
		5.2.2	TSP: Representations and crossover operators			130
			5.2.2.1 TSP: path representation			131
			5.2.2.2 TSP: adjacency representation			134
	<i>5</i> 2		5.2.2.3 TSP: ordinal representation			136
	5.3		Intelligence: The Power of Many			138
	C	5.3.1	Ant colony optimization			141
		mary cises				144 144
_			** 11/ * **			
6	Alg (A* and Variations a & Bound			147 148
	0.1	6.1.1	Performance of B&B			152
		6.1.2	B&B on the TSP			153
		6.1.3	Higher estimates are better estimates			156
	6.2		thm A*			156
	0.2	6.2.1	Dijkstra's algorithm			156
		6.2.2	A*			158
		6.2.3	A* is admissible			162
		6.2.4	Proof of admissibility			163
		6.2.5	Higher is better			164
		6.2.6	The monotone condition			166
		6.2.7	Performance of A*			167
		6.2.8	Weighted A*			167
	6.3		Saving Versions of A*			169
		6.3.1	Iterative deepening A*			169
		6.3.2	Recursive best first search			170
		633	Sequence alignment			171

viii	0	Contents		
		6.3.4	Pruning CLOSED 6.3.4.1 Divide and conquer frontier search 6.3.4.2 Smart memory graph search	173 173 175
		6.3.5	Beam stack search	176
		6.3.6	Pruning OPEN and CLOSED	178
	Sum	mary		179
	Exe	rcises		180
7			ecomposition	185
	7.1		n Directed Inference Systems	185
	7.2		Based Production Systems	189
		7.2.1	The working memory in OPS5	190
		7.2.2 7.2.3	Patterns in rules Actions in rules	191 192
		7.2.3	The inference engine	192
		7.2.5	Conflict resolution strategies	194
		7.2.6	The Rete net	197
		7.2.7	The Rete algorithm	201
	7.3		em Decomposition with And–Or Graphs	205
		7.3.1	÷	206
		7.3.2	Symbolic integration	209
		7.3.3	Algorithm AO*	211
	Sum	mary		216
	Exer	rcises		216
8	Che	ess and	Other Games	221
	8.1		Theory	223
		8.1.1	The prisoner's dilemma	224
		8.1.2	Types of games	225
	8.2		Games	227
		8.2.1	Strategies	229
		8.2.2		231
		8.2.3		235
		8.2.4 8.2.5	AlphaBeta pruning Algorithm SSS*: best first search	236 239
		8.2.6	Algorithm SSS*: best first search Algorithm SSS*: an iterative version	243
		8.2.7	AlphaGo, AlphaGo Zero, and AlphaZero	246
	8.3		ammon and Scrabble: Elements of Chance	247
	8.4	_	act Bridge: A Challenge for AI	250
	Summary			258
		rcises		258
9	Automated Planning			
	9.1	Repres	sentation	264
		9.1.1	Time and change	264
	9.2		e Planning Domains	266
		9.2.1	STRIPS	266
		9.2.2	The blocks world domain	268

				Contents	ix
	9.3	State S	Space Planning		272
	7.5	9.3.1	Forward state space planning		273
		9.3.2			274
		9.3.3	1		277
	9.4		Stack Planning		280
		9.4.1	Linear planning		281
		9.4.2	•		284
	9.5	Partial	Order Planning		286
		9.5.1	A two armed robot		293
	9.6	Algori	thm Graphplan		295
		9.6.1	The planning graph		295
		9.6.2	Heuristics and solutions from the planning graph		300
	9.7	Planni	ng as Satisfiability		302
		9.7.1	ϵ		303
		9.7.2	The planning graph as SAT		306
	9.8		Planning Domains		307
		9.8.1	Durative actions		308
		9.8.2	Metric domains		310
		9.8.3	Conditional effects		310
		9.8.4	Contingent planning		311
		9.8.5	Trajectory constraints and preferences		312
		9.8.6	Coordination in multi-agent systems		312
	C	9.8.7	Epistemic planning		313
		mary cises			315
	Exer	cises			315
10			as Search		319
	10.1	_	al Connectives		320
					321
	10.2		ment and Proof		323
		10.2.1			324
	10.2		Completeness		326
	10.3		Order Logic		328
		10.3.1			329
			Atomic formulas		330
	10.4	10.3.3	Quantifiers, formulas, and sentences tion in FOL		331
	10.4	10.4.1			333 335
		10.4.1	1 1		337
		10.4.2			339
		10.4.3	•		341
		10.4.4	_		343
		10.4.5	•		346
		10.4.7	1		347
		10.4.7			351
		10.1.0			551

X	Contents	
	10.5 The Family of Logics	355
	10.5.1 Horn clause logic and Prolog	356
	10.5.2 Description logics	357
	10.5.3 Default reasoning	359
	10.5.4 Event calculus	360
	10.5.5 Epistemic logic	361
	Summary	362
	Exercises	362
11	Search in Machine Learning by Sutanu Chakraborti	367
	11.1 Decision Trees	371
	11.2 k-Nearest Neighbour	376
	11.3 Bayesian Classification	378
	11.4 Artificial Neural Networks	382
	11.5 K-MEANS Clustering	389
	Summary	391
	Exercises	391
12	Constraint Satisfaction	393
	12.1 Constraints: Clearing the Fog	394
	12.1.1 The map colouring problem	394
	12.1.2 The <i>N</i> -queens puzzle	395
	12.2 Algorithm BACKTRACKING	398
	12.2.1 Static variable ordering	400
	12.2.2 Dynamic variable ordering	402
	12.3 Constraint Propagation	403 404
	12.3.1 Arc consistency 12.3.2 The Waltz algorithm	404
	12.3.3 Path consistency	411
	12.3.4 i-Consistency	414
	12.3.5 Directional consistency	415
	12.4 Lookahead Search	417
	12.4.1 Algorithm forward checking	419
	12.4.2 Algorithm DAC-Lookahead	422
	12.4.3 Algorithm AC-Lookahead	425
	12.5 Informed Backtracking	426
	12.5.1 Gaschnig's backjumping	427
	12.5.2 Graph based backjumping	429
	12.5.3 Conflict directed backjumping	432
	Summary	434
	Exercises	435

References

Index

Appendix: Algorithm and Pseudocode Conventions by S. Baskaran

441

449

461

Preface

This book is meant for the serious practitioner-to-be of constructing intelligent machines. Machines that are aware of the world around them, that have goals to achieve, and the ability to imagine the future and make appropriate choices to achieve those goals. It is an introduction to a fundamental building block of artificial intelligence (AI). As the book shows, search is central to intelligence.

Clearly AI is not one monolithic algorithm but a collection of processes working in tandem, an idea espoused by Marvin Minsky in his book *The Society of Mind* (1986). Human problem solving has three critical components. The ability to make use of experiences stored in memory; the ability to reason and make inferences from what one knows; and the ability to search through the space of possibilities. This book focuses on the last of these. In the real world we sense the world using vision, sound, touch, and smell. An autonomous agent will need to be able to do so as well. Language, and the written word, is perhaps a distinguishing feature of the human species. It is the key to communication which means that human knowledge becomes pervasive and is shared with future generations. The development of mathematical sciences has sharpened our understanding of the world and allows us to compute probabilities over choices to take calculated risks. All these abilities and more are needed by an autonomous agent.

Can one massive neural network be the embodiment of AI? Certainly, the human brain as a seat of intelligence suggests that. Everything we humans do has its origin in activity in our brains, which we call the mind. Perched on the banks of a stream in the mountains we perceive the world around us and derive a sense of joy and well-being. In a fit of contented creativity, we may pen an essay or a poem using our faculty of language. We may call a friend on the phone and describe the scene around us, allowing the friend to visualize the serene surroundings. She may reflect upon her own experiences and recall a holiday she had on the beach. You might start humming your favourite song and then be suddenly jolted out of your reverie remembering that friends are coming over for dinner. You get up and head towards your home with cooking plans brewing in your head.

So, in principle at least one can imagine a massive neural network that could do all the above. But how would it be implemented? What kind of a training process would instil all such knowledge and memories in the neural brain? Human beings go through a lifetime of learning. A human baby, unlike a fawn, is an utterly helpless creature and needs to be nurtured for years. Taught in schools, influenced by peer groups, moulded through culture and religion, coached in sports. Every human is said to be unique, even identical twins. We celebrate this diversity, even when it is sometimes a source of crime and conflict. Are we ready for idiosyncratic machines? Or do we aim for identical assembly line robots? But what or who would they be like? And what about issues of fairness? And generation of harmful or misleading content?

xii Preface

The twenty-first century has seen an explosion in machine learning as exemplified by deep neural networks which outperform humans on many classification tasks, and large language models that can generate an essay, a college application, or a poem in a jiffy. Massive computing power and humungous amounts of data have made this possible. It has been very impressive, but has it peaked? Do we need to move on and seek another path to the Holy Grail, machines which autonomously solve problems for us? Instead of blanket ingestion of all data on the internet, perhaps we need to build machines which learn from human expertise to become experts in specific domains. And do useful things for us.

This book is a step in that direction. It is designed to be a complete guide to one specific aspect of problem solving – the use of search methods. It is intended to be one in-depth module for the task of building AI, and its contents can be covered in a one semester course. We begin by learning to walk with small problems, and gradually build a repertoire of search algorithms that would allow us to navigate the high seas and vast deserts. The algorithms are general purpose, but our representations are tailormade for the individual domains. We urge the interested reader to implement the algorithms described here and develop a suite of search algorithms that can be used to solve specific problems.

One common feature in all these algorithms is that they operate on symbolic data, where symbols stand for things meaningful to us, and algorithms operate upon them. This approach is, as *hypothesized* by Herbert Simon and Alan Newell in 1976, both necessary and sufficient to create AI.

Maybe one day these many algorithms and the different problems they solve will come together in an integrated entity as a step towards artificial general intelligence. But that will need advances in knowledge representation where different domains and problems can be uniformly expressed in a common language. There is work still ahead for us.

Acknowledgements

Several people have contributed in myriad ways to this book, some directly and some indirectly. Many students in my class, both online and offline, have triggered a thought process by asking incisive questions and making insightful observations. I gratefully acknowledge all of them collectively. They have made the job of teaching and learning rewarding.

Baskaran Sankaranarayanan has been involved with my courses over the last few years, answering student queries, helping with question papers and figures, and most importantly by standardizing the way in algorithms are written in pseudo code. He has written the appendix in this book on algorithm style, and the algorithms in the book conform to that style.

Sutanu Chakraborti has been a long-time collaborator working in AI. He wrote a chapter on natural language processing in my previous book, *A First Course in Artificial Intelligence*. In this book he has written one chapter on machine learning, despite a pressing schedule.

I am indebted to the following who have read and commented upon parts of the book – Nitin Dhiman, Aditi Khemani, Kamal Lodaya, Adwait Pramod Parsodkar, Devika Sethi, and Shashank Shekhar.

I am grateful to the team at CUP for their constant support from the very beginning. Vaishali Thapliyal took up my book proposal with gusto and got reviews from external reviewers expeditiously, yielding some very valuable suggestions and feedback. When the manuscript was ready Vikash Tiwari and Ankush Kumar initiated the production process immediately. Aniruddha De and Karan Gupta have done an excellent job with proofreading and copy editing, ironing out many discrepancies and bringing uniformity to the writing style.

Finally, I would like to thank the friends and family who have supported the book writing in many ways.