

A PRACTICAL GUIDE TO DATA ANALYSIS USING R

Using diverse real-world examples, this text examines what models used for data analysis mean in a specific research context. What assumptions underlie analyses, and how can you check them?

Building on the successful *Data Analysis and Graphics Using R*, third edition (Cambridge, 2010), it expands upon topics including cluster analysis, exponential time series, matching, seasonality, and resampling approaches. An extended look at p-values leads to an exploration of replicability issues and of contexts where numerous p-values exist, including gene expression.

Developing practical intuition, this book assists scientists in the analysis of their own data, and familiarizes students in statistical theory with practical data analysis. The worked examples and accompanying commentary teach readers to recognize when a method works and, more importantly, when it doesn't. Each chapter contains copious exercises. Selected solutions, notes, slides, and R code are available online, with extensive references pointing to detailed guides to R.

JOHN H. MAINDONALD is Contract Associate at Statistics Research Associates and was previously Visiting Fellow at the Australian National University. He has had wide experience both as a university lecturer and as a quantitative problem solver, working with researchers in diverse areas. He is the author of *Statistical Computation* (1984), and the senior author of *Data Analysis and Graphics Using R* (third edition, 2010).

W. JOHN BRAUN is Professor at the University of British Columbia, where he is Director of the UBCO campus of the Banff International Research Station for Mathematical Innovation and Discovery. In 2020, he received the Statistical Society of Canada Award for Impact of Applied and Collaborative Work.

JEFFREY L. ANDREWS is Associate Professor at the University of British Columbia. He currently serves as Principal Co-director of the Master of Data Science program and President-elect of The Classification Society (TCS). He is the 2013 Distinguished Dissertation Award winner from TCS and a recipient of the 2017 Chikio Hayashi Award for Young Researchers from the International Federation of Classification Societies.

A PRACTICAL GUIDE TO DATA ANALYSIS USING R

An Example-Based Approach

JOHN H. MAINDONALD

Statistics Research Associates, Wellington, New Zealand

W. JOHN BRAUN

University of British Columbia, Okanagan

JEFFREY L. ANDREWS

University of British Columbia, Okanagan

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India 103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www. cambridge. org Information on this title: www.cambridge.org/9781009282277

DOI: 10.1017/9781009282284

© John H. Maindonald, W. John Braun, and Jeffrey L. Andrews 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2024

Printed in the United Kingdom by CPI Group Ltd, Croydon CR0 4YY

A catalogue record for this publication is available from the British Library

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-009-28227-7 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For my grandchildren Luke, Amelia, and Ted
For my children, Matthew, Phillip, and Reese
For my family (Irene, Charlie, and Mia) and my parents (Dave and Marleen)

Contents

	List o	of Figures	page xi
	Prefa	ce	xvii
1	Lear	ning from Data, and Tools for the Task	1
	1.1	Questions, and Data That May Point to Answers	2
	1.2	Graphical Tools for Data Exploration	12
	1.3	Data Summary	22
	1.4	Distributions: Quantifying Uncertainty	30
	1.5	Simple Forms of Regression Model	42
	1.6	Data-Based Judgments – Frequentist, in a Bayesian World	48
	1.7	Information Statistics and Bayesian Methods with Bayes	
		Factors	58
	1.8	Resampling Methods for SEs, Tests, and Confidence Intervals	66
	1.9	Organizing and Managing Work, and Tools That Can Assist	70
	1.10	The Changing Environment for Data Analysis	72
	1.11	Further, or Supplementary, Reading	79
	1.12	Exercises	80
2	Generalizing from Models		
	2.1	Model Assumptions	88
	2.2	t-Statistics, Binomial Proportions, and Correlations	91
	2.3	Extra-Binomial and Extra-Poisson Variation	95
	2.4	Contingency Tables	100
	2.5	Issues for Regression with a Single Explanatory Variable	104
	2.6	Empirical Assessment of Predictive Accuracy	116
	2.7	One- and Two-Way Comparisons	121
	2.8	Data with a Nested Variation Structure	130
	2.9	Bayesian Estimation – Further Commentary and Approaches	131
	2.10	Recap	136
	2.11	Further Reading	137
	2.12	Exercises	137
3	Mult	tiple Linear Regression	144
	3.1	Basic Ideas: the allbacks Book Weight Data	144
	3.2	The Interpretation of Model Coefficients	148

viii Contents

	3.3	Choosing the Model, and Checking It Out	161
	3.4	Robust Regression, Outliers, and Influence	171
	3.5	Assessment and Comparison of Regression Models	176
	3.6	Problems with Many Explanatory Variables	183
	3.7	Errors in x	191
	3.8	Multiple Regression Models – Additional Points	195
	3.9	Recap	201
	3.10	Further Reading	202
	3.11	Exercises	203
4	Exploiting the Linear Model Framework		
	4.1	Levels of a Factor – Using Indicator Variables	209
	4.2	Block Designs and Balanced Incomplete Block Designs	213
	4.3	Fitting Multiple Lines	216
	4.4	Methods for Fitting Smooth Curves	219
	4.5	* Quantile Regression	238
	4.6	Further Reading and Remarks	240
	4.7	Exercises	240
5	Gene	eralized Linear Models, and Survival Analysis	245
	5.1	Generalized Linear Models	245
	5.2	Logistic Multiple Regression	250
	5.3	Logistic Models for Categorical Data – an Example	260
	5.4	Models for Counts - Poisson, Quasipoisson, and Negative	
		Binomial	261
	5.5	Fitting Smooths	274
	5.6	Additional Notes on Generalized Linear Models	276
	5.7	Models with an Ordered Categorical or Categorical Response	278
	5.8	Survival Analysis	281
	5.9	Transformations for Proportions and Counts	288
	5.10	Further Reading	289
	5.11	Exercises	290
6	$\mathbf{Tim}_{\mathbf{c}}$	e Series Models	292
	6.1	Time Series – Some Basic Ideas	293
	6.2	Regression Modeling with ARIMA Errors	304
	6.3	* Nonlinear Time Series	313
	6.4	Further Reading	314
	6.5	Exercises	315
7	Mul	tilevel Models, and Repeated Measures	318
•	7.1	Corn Yield Data – Analysis Using aov()	320
	7.2	Analysis Using lme4::lmer()	325
	7.3	Survey Data, with Clustering	$\frac{329}{329}$
	7.3	A Multilevel Experimental Design	$\frac{329}{335}$
	7.5	Within- and Between-Subject Effects	344
	7.6	A Mixed Model with a Betabinomial Error	349
	1.0	11 1/11/104 1/10401 WINH & DOUWDHIOHHAI LITOI	949

		Contents	ix
	7.7	Observation-Level Random Effects – the moths Dataset	356
	7.8	Repeated Measures in Time	357
	7.9	Further Notes on Multilevel Models	367
	7.10	Recap	371
	7.11	Further Reading	371
	7.12	Exercises	371
8	Tree	-Based Classification and Regression	373
	8.1	Tree-Based Methods – Uses and Basic Notions	374
	8.2	Splitting Criteria, with Illustrative Examples	378
	8.3	The Practicalities of Tree Construction – Two Examples	384
	8.4	From One Tree to a Forest – a More Global Optimality	390
	8.5	Additional Notes – One Tree, or Many Trees?	393
	8.6	Further Reading and Extensions	395
	8.7	Exercises	396
9	Mul	tivariate Data Exploration and Discrimination	400
	9.1	Multivariate Exploratory Data Analysis	401
	9.2	Principal Component Scores in Regression	408
	9.3	Cluster Analysis	412
	9.4	Discriminant Analysis	422
	9.5*	High-Dimensional Data – RNA-Seq Gene Expression	429
	9.6	High-Dimensional Data from Expression Arrays	433
	9.7	Balance and Matching – Causal Inference from Observational	4.40
	0.0	Data	443
	9.8	Multiple Imputation	457
	9.9	Further Reading	462
	9.10	Exercises	463
	Epilo	gue	467
App	endix	A The R System: a Brief Overview	469
	A.1	Getting Started with R	469
	A.2	R Data Structures	473
	A.3	Functions and Operators	483
	A.4	Calculations with Matrices, Arrays, Lists, and Data Frames	487
	A.5	Brief Notes on R Graphics Packages and Functions	490
	A.6	Plotting Characters, Symbols, Line Types, and Colors	493
	Refer	rences	495
	Refer	rences to R Packages	508
	Index	x of R Functions	514
	Index	x of Terms	519

Figures

1.1	(A) Dotplot and (B) boxplot displays of cuckoo egg lengths	4
1.2	(A) Boxplot with annotation, compared with (B) histogram with over-	
	laid density plot	12
1.3	Total lengths of possums, by sex and geographical location	13
1.4	Mortality from measles, London: (A) 1629–1939; (B) 1841–1881	14
1.5	Brain vs. body weight: (A) untransformed; (B) log transformed scales	15
1.6	Distance traveled up a 20° ramp, vs. starting point	16
1.7	Quarterly labor force numbers, by Canadian region, 1995–1996: (A)	
	same log scale; (B) sliced log scale	18
1.8	Alternative logarithmic scale labeling choices, labor force numbers	19
1.9	Outcomes for two different surgery types – Simpson's paradox example	20
1.10	Boxplot showing weights (inverse sampling fractions), in the dataset	
	DAAG::nassCDS	23
1.11	Individual plot-level yields of kiwifruit, by season and by block	25
1.12	Different y vs. x relationships, and Pearson vs. Spearman correlation	29
1.13	Normal density plot, with associated statistical measures	34
1.14	Plots for five samples of 50 from a normal distribution	35
1.15	Quantile-quantile plots – data vs. simulated normal values	36
1.16	Simulations of the sampling distribution of the mean	38
1.17	Normal densities with t_8 and t_3 overlaid	40
1.18	A fitted line, as against a fitted lowess curve	44
1.19	Quantile–quantile plots – regression residuals vs. normal samples	46
1.20	Boxplots for 200 simulated p -values – one-sided one-sample t -test	52
1.21	Post-study probability (PPV) vs. pre-study odds, given power	55
1.22	Sampling distribution of difference in AIC statistics	60
1.23	Alternative Cauchy priors, and posteriors, for the sleep data	62
1.24	Change in Bayes Factor with sample size, for different p -values	64
1.25	Permutation distribution density curves	67
2.1	Female vs. male admission rates – Simpson's paradox example	89
2.2	Second vs. first member of paired data – two examples	92
2.3	Quantile—quantile and worm plots for binomial and betabinomial fits	97
2.4	Worm plots for Poisson and negative binomial type I fits	98
2.5	Chemical vs. magnetic measure – line vs. loess smooth	105
2.6	Weight vs. volume, for eight softback books, with regression line	107
2.7	Diagnostic plots for Figure 2.6	108

xii

List of Figures

2.8	Pointwise bounds for line, and for new predicted values	110
2.9	Confidence bounds – pairwise differences vs. difference of means	111
2.10	Regression lines $-y$ on x and x on y	112
2.11	Graphs that illustrate the use of power transformations	113
2.12	Heart weight vs. body weight, for 30 Cape fur seals	115
2.13	Graphical summary of three-fold cross-validation – house sale data	117
2.14	Plots that relate to bootstrap distributions of prediction errors	120
2.15	LSD and HSD comparisons of means for three treatments	122
2.16	Test for linear trend vs. anova test $-p$ -value comparison	125
2.17	False-color image of two channel microarray gene expression values	126
2.18	Rice shoot dry mass data – plots that show interactions	129
2.19	Diagnostic plots - MCMCregress() Bayesian analysis	135
3.1	Weight vs. volume, for seven hardback and eight softback books	145
3.2	${ m Diagnostic~plots-lm(weight~\sim~0+volume+area)}$	147
3.3	Scatterplot matrices for Northern Ireland hill race data	149
3.4	Variation in distance per unit time with distance	151
3.5	$ ext{Diagnostic plots} - ext{lm(mph} \sim ext{log(dist)+log(gradient)}$	152
3.6	Diagnostic plots - lm(logtime ~ logdist + logclimb)	153
3.7	Scatterplot matrices – log transformed oddbooks data	154
3.8	Scatterplot matrix for the DAAG::litters data	157
3.9	Termplots for regression with oddbooks data	164
3.10	Confidence intervals, compared with prediction intervals	167
3.11	Scatterplot matrix with power transformations – hurricane deaths data	169
3.12	Diagnostic plots – model for hurricane death data	170
3.13	Scatterplot matrix for hills2000 data, logarithmic scales	172
3.14	Residuals vs. fitted – least squares compared with resistant fit	173
3.15	(A) A 2D plot that shows leverages; (b) a 3D dynamic graphic plot	175
3.16	Standardized changes in regression coefficients	175
3.17	Increase in penalty term difference for unit increase in the number of	
	parameters p , for AIC, BIC, and AICc	177
3.18	Diagnostic plot, compared with simulated diagnostic plots	182
3.19	p-Values vs. number of variables available for selection	186
3.20	Scatterplot matrix for Coxite data	187
3.21	Observed porosities, and fitted values with 95 percent confidence bounds	188
3.22	Change in regression line as error in x changes	192
3.23	Apparent differences between groups, resulting from errors in x	194
3.24	Does preoperative baclofen reduce pain – Simpson's paradox example?	196
3.25	Added variable plots (a termplot variant)	198
3.26	Residuals vs. fitted values, for each of the three regressions	199
4.1	Weights of extracted sugar – wild-type plant vs. other types	209
4.2	Apple taste scores – panelist and product effects	215
4.3	Plots relate to alternative models fitted to the leaftemp data	219
4.4	Diagnostic plots for the parallel line model – leaftemp data	219
4.5	Number of grains per head vs. barley seeding rate	221
4.6	Line vs. quadratic curve, and residual plots, for barley seeding rate	
2.0	data	223
4.7	Resistance vs. apparent juice content for kiwifruit slabs	226
4.8	Thin plate spline basis curves, and contributions to fitted curve	228
	p p p p p p p_	

	List of Figures	xiii
4.9	Use of gam.check() with model for fruitohms data	229
4.10	Plots that relate to a monotonic decreasing spline fit	231
4.11	Gas consumption vs. external temperature – before and after insulation	232
4.12	Minimum and maximum temperature effects on dewpoint	234
4.13	Residuals vs. maximum temperature, for three minimum temperature	
	ranges	235
4.14	Hurricane deaths – plots for fitted terms, and for residuals	236
4.15	Hurricane deaths – logarithmic vs. untransformed base damage mea-	
	sure	236
4.16	Plots show quantile curves (A) the 50 percent curve with two SE	
	bounds; (B) 10 percent and 90 percent curves, unweighted and weighted	
	by population	239
5.1	Plot illustrating the logit link function	246
5.2	Proportion moving vs. alveolar concentration – anesthetic data	249
5.3	Empirical log(odds) vs. concentration – anesthetic data	250
5.4	Location of sites for DAAG::frogs data	251
5.5	Scatterplot matrices that relate to frogs data	252
5.6	Scatterplot matrix, with suggested transformations – frogs data	254
5.7	Color density scale shows predicted probability of finding a frog	256
5.8	Explanatory variable contributions to fit, linear predictor scale	256
5.9	Contributions of model terms to fit, relative to means from other terms	258
5.10	Number of simple aberrant crypt foci, plotted against time	262
5.11	Dotplot summaries of numbers of two moth species, by habitat type	264
5.12	Dispersion estimates vs. mean, for moths data	267
5.13	Diagnostic plots – model for numbers of species A moths	269
5.14	Diagnostic plots – hurricane death model with quasipoisson error	271
5.15	Fitted values for NBI model, and quantile—quantile plot of residuals	273
5.16	Proportion of lefthanders, as smooth function of year of birth	275
5.17	Leverage vs. fitted proportion, for three common link functions	278
5.18	Graphical representation of survival data collection process	282
5.19	Survival curves – female vs. male AIDS contaminated blood infections	284
5.20	Survival curve for males who contracted AIDS from sexual contact	285
5.21	Time-dependent coefficients – Cox proportional hazards model	287
5.22	Time-dependent coefficients – Cox proportional hazards, cricketers	289
6.1	Trace plot of annual Lake Huron depth measurements	294
6.2	(A) First four lag plots of Lake Huron depth data; (B) autocorrelations	
	for AR(1) and AR(2) fits vs. data; (C) partial autocorrelations	295
6.3	Autocorrelations and partial autocorrelations for an MA process	298
6.4	Predictions with pointwise $CIs - ARIMA(1,1,2)$ vs. ETS	301
6.5	Two simulation runs each for alternative MA3 processes	302
6.6	Original and seasonally adjusted series, and plot of seasonal component	303
6.7	mdbrtRain and mdbAVt, and SOI and IOD yearly values	304
6.8	Termplots for model gam(mdbrtRain $\sim s(CO2)+s(SOI)+s(IOD)$	305
6.9	Termplots for model gam(mdbAVt \sim s(CO2)+s(SOI)	307
6.10	(A) Rainfall; (B) temperature vs. year, with fitted values	307
6.11	Scatterplot matrix for air quality data	310
6.12	Predicted values of IA400/Lab ratio – ARIMA vs. ETS model	312
7.1	Stripplots – corn yields for four parcels on each of eight sites	319

xiv

List of Figures

7.2	Profile likelihoods – model fitted to Antiguan corn data	328
7.3	Boxplots for average class scores (like) – public vs. private schools	329
7.4	Plots of parameter estimates for fit to DAAG::science data	333
7.5	Field layout for the kiwifruit shading trial	336
7.6	Variation at the different levels, for the kiwifruit shading data	340
7.7	Plots of residuals, of plot effects, and of simulated plot effects	343
7.8	Effects of car window tinting on visual performance, plots of data	345
7.9	Cold-storage fruitfly mortality, fitted curves and 95 percent bounds	351
7.10	Fruitfly mortality model – intra-class correlations for different links	352
7.11	Diagnostics for model fitted to insect cool-storage time—mortality data:	
	(A) quantile–quantile plot of quantile residuals; (B) boxplots compar-	
	ing treatment groups; (C) data-based quartiles vs. model-based; (D)	
	quartiles as a function of number of insects	354
7.12	LT99 95 percent CIs – complementary log–log link and logit link	355
7.13	Oxygen intake vs. power output, for five athletes in the Daedalus	
	project	360
7.14	Distance between two positions on the skull vs. age, for 27 children	363
7.15	Slopes of profiles, vs. means of distance and log(distance)	364
8.1	Boxplots for six selected variables, from 500 rows in the SPAM database	375
8.2	Tree diagram, from use of rpart() with email spam data	376
8.3	Illustrative tree from rpart() output	378
8.4	Mileage (mpg) vs. Weight, for 60 cars, with loess curve	381
8.5	Tree-based model for Mileage given Weight, for 60 cars	381
8.6	CV error eventual increase vs. error decrease, with later splits	384
8.7	CV error vs. cp, for female heart attack data	386
8.8	Tree from use of one standard error rule for email spam data	388
8.9	Error rates – random forest OOB vs. test set and rpart() test set	394
9.1	Brushtail possum morphometric measurements: (A) scatterplot matrix;	400
0.0	(B) cloud plot	402
9.2	Second vs. first principal component, columns 6–14 of possum data	404
9.3	This repeats Figure 9.2, now for bootstrap data	406
9.4	Two-dimensional, obtained from nine-dimensional Euclidean, by two	407
0.5	different scaling methods	407
9.5	Pairs plot of first three principal components	410
9.6 9.7	Plot of BDI against scores on first principal component	$411 \\ 412$
9.7	Four "blobs" of bivariate normal data, with different layouts of means	413
9.9	Single linkage hierarchical clustering plot, and plot that checks results Cluster dendrograms for Panel B of Figure 9.7	413
9.10	Dendrograms shown are from moving clusters closer together	414
9.10	Four-group k -means makes implicit equal-sized assumption, example	417
9.11	Different two-component mixtures of univariate Gaussians	418
9.13	BIC values (BIC as used elsewhere), plotted against number of groups	420
9.14	Density contours of the fitted mixture model	421
9.15	Leaf length vs. leaf width – untransformed vs. logarithmic scales	423
9.16	Scatterplot matrix for the first three LDA canonical variates	428
9.17	(A) Mean–variance relationship for mRNA gene expression data; (B)	120
J. 1	use MDS to locate samples in 2D space	431
9.18	(A) LDA analysis for Golub data; (B) repeat for random normal data	436

List of Figures xv9.19(A) Mean-variance relationship for cancer gene expression data; (B) use MDS to locate samples in 2D space 437 9.20 Different accuracy measures, in the development of a discriminant rule 440 9.21 442 How effective is linear discriminant in distinguishing known groups? 9.22 Overlaid density plots – treatment groups and experimental controls 447 9.23 Are observations for which re74 is available detectably different? 448 9.24 Random forest propensity scores – treated vs. controls? 451 9.25Propensity scores for treatment and control groups after matching 454 9.26 (A) "Love plot"; (B) treatment/control differences for matched items 454 9.27 Love plots for different numbers (5,6) of cutpoints 456 9.28Term plots for checking GAM model with straight line terms 459 9.29 Means of overimputations (solid points), with confidence bounds 461 A.1 Worldwide annual totals of CO_2 emissions – 1900, 1920, ..., 2020 471 A.2 Fonts, symbols, and line types 493

Preface

This text is designed as an aid, for learning and for reference, in the navigation of a world in which unprecedented new data sources, and tools for data analysis, are pervasive. It aims to teach, using real-world examples, a style of analysis and critique that, given meaningful data, can generate defensible analysis results. Its focus is on ideas and concepts, with extensive use of graphical presentation. It may be used to give students who have taken courses in statistical theory exposure to practical data analysis. It is designed, also, as a resource for scientists who wish to do statistical analyses on their own data, preferably with reference as necessary to professional statistical advice. It emphasizes the role of statistical design and analysis as part of the wider scientific process.

As far as possible, our account of statistical methodology comes from the coalface, where the quirks of real data must be faced and addressed. Experience in consulting with researchers in many different areas of application, in supervising research students, and in lectures to researchers, have been strong influences in the text's style and content. We comment extensively on analysis results, noting inferences that seem well founded, and noting limitations on inferences that can be drawn. We emphasize the use of graphs for gaining insight into data – in advance of any formal analysis, for understanding the analysis, and for presenting analysis results. The project has been a tremendous learning experience for all three of us. As is usual, the more we learn, the more we appreciate how much more we have to learn.

The text is suitable for a style of learning where readers work through the text with a computer at their side, running the R code as and when this seems helpful. It complements more mathematically oriented accounts of statistical methodology. The appendix provides a brief account of R, primarily as a starting point for learning. We encourage readers with limited R experience to avail themselves of the wealth of instructional material on the web as well as the hardcopy resources listed in Section 1.11.

While no prior knowledge of specific statistical methods or theory is assumed, readers will need to bring with them, or quickly acquire, a modest level of statistical sophistication. Prior experience with real data, prior exposure to statistical methodology, and some prior familiarity with regression methods, will all be helpful.

xviii Preface

Important technical terms will include random sample, independence, dependence, standard deviation, and normal distribution, with limited attention to formal definition. Our primary concern is with the role and meaning of this language in practical data analysis. While there will be references to theoretical results, it is not our purpose to provide a systematic account of statistical theory. We make only limited use of mathematical symbolism.

Statistical analysis relies heavily on mathematical models. An understanding of the mathematics underlying a model is important only to the extent that it helps in understanding, and where possible in checking, what the model means in the context from which the data came. Is it reasonable to assume that observations are independent? What are the influences, perhaps the time sequence in which the data were collected, that might place this assumption in question? This is just one of the issues, but a very important one, that data analysts need to consider. Comments made by John W. Tukey emphasize the importance, in statistical training and practice, of wrestling with what the models used mean in the context of data that has been presented for analysis:

 \dots Statistics is a science \dots and it is no more a branch of mathematics than are physics, chemistry and economics; for if its methods fail the test of experience – not the test of logic – they are discarded.

[Tukey (1953), quoted by Brillinger (2002)]

The methods that we cover have wide application. The datasets, many of which have featured in published papers, are drawn from many different fields. They reflect a journey in learning and understanding, alike for the authors and for those with whom they have worked, that has ranged widely over many different research areas. We hope that our text will stimulate the cross-fertilization that occurs when ideas and applications that have proved effective in one area find use elsewhere, perhaps even leading to new lines of investigation.

To summarize: The strengths of this book include the directness of its encounter with research data, its advice on practical data analysis issues, careful critiques of analysis results, the use of modern data analysis tools and approaches, the use of simulation and other computer-intensive methods where these provide insight or give results that are not otherwise available, attention to graphical and other presentation issues, the use of examples drawn from across the range of statistical applications, the links that it makes into the debate over reproducibility in science, and the inclusion of code that reproduces analyses.

A substantial part of the first edition of Data Analysis and Graphics Using R (Maindonald and Braun, 2003) was derived, initially, from the lecture notes of courses for researchers that the first author presented, at the University of Newcastle (Australia) over 1996–1997 and at Australian National University from 1998, through until formal retirement and beyond. It was a privilege to have contacts, arising from consulting work and lectures, across the University. Those contacts were extended as a result of short courses on R-based analysis that were offered,

 $^{^1\,}$ For an overview of the theory of statistical inference, see, for example, Cox (2006).

Preface xix

across a wide variety of Australian government and academic institutions, between 2003 and 2014.

Influences on the Modern Practice of Statistics

Statistics is a young discipline. Only in the 1920s and 1930s did the modern framework of statistical theory, including ideas of hypothesis testing and estimation, begin to take shape. As documented in Gigerenzer et al. (1989, *The Empire of Chance*), differences in historical development have led to some differences in practice between research areas.

Statistical methods have found wide use, but they have also been widely misused. There has been a widespread reliance on "black box" approaches, used without due consideration of the reasonableness of assumptions made, or attention to diagnostic checks, or attention to the processes that generated the data. In experimental work, the use of p-values and other statistics has too often become a substitute for the checks that independent replication provides on the total experimental process. There has been a renewed attention, both in the wider scientific community and in the statistical community, to the interplay between scientific methodology and statistical design and analysis. Critical reexamination of current scientific processes, and of the role of statistical analysis within those processes, can help ensure that the demands of scientific rationality do in due course win out over accidents of historical development and all-too-human failures to maintain critical standards.

New Data Analysis Tools

The methodology has developed in a synergy with the relevant supporting mathematical theory and, more recently, with computing. This has led to major advances on the methodologies of the precomputer era. "Data Science," or perhaps "Statistical Science," is a good name for the mix of tools and skills required for effective data analysis. Data analysts now have at their disposal vastly new powerful tools than were available even 20 years ago, for exploratory analysis of regression data, for choosing between alternative models, for diagnostic checks, for handling nonlinearity, for assessing the predictive power of models, and for graphical presentation. New computing tools make it straightforward to move data between different systems, to keep a record of calculations, to retrace or adapt earlier calculations, and to edit output and graphics into a form that can be incorporated into published documents. Machine learning and related methodologies emphasize new types of data, new data analysis demands, new data analysis tools, and datasets that may be of unprecedented size. Textual data and image data offer interesting new challenges.

The traditional concerns of professional data analysts remain as important as ever. Irrespective of the size of dataset, questions of data quality, of relevance to the issues that are under investigation, and of the way that the data have been sampled, remain as important as ever. Implicit or explicit claims that results generalize to a relevant wider target population must be justified.

Students in first or second year university courses, in such areas as geography or biology or politics or psychology or business studies, are increasingly likely to

xx Preface

encounter R. It is finding its way into the upper levels of secondary schools. While this is to be encouraged, students do need to understand that such courses are at the start of an adventure in statistical understanding. There is no good substitute for professional training in modern tools for data analysis, and experience in using those tools with a wide range of datasets. No one should be embarrassed that they have difficulty with analyses that involve ideas that professional statisticians may take seven or eight years of training and experience to master.

The questions that data analysis is designed to answer can often be stated simply. This may encourage the layperson, or even scientists doing their own analyses, to believe that the answers are similarly simple. Commonly, they are not. Be prepared for unexpected subtleties. Comments made by Stephen Senn are apt:

I've been studying statistics for over 40 years and still don't understand it. The ease with which non-statisticians master it is staggering.

No amount of statistical or computing technology can be a substitute for good design of data collection, for understanding the context in which data are to be interpreted, or for skill in using available analysis tools. The best any analysis can do is to highlight the information in the data.

The R System

Work on R started in the early 1990s, as a project of Ross Ihaka and Robert Gentleman, when both were at the University of Auckland (New Zealand). The R system implements a dialect of the S language, developed at AT&T by John Chambers and colleagues. Section 1.4 in Chambers (2008) describes the history. Versions of R are available, at no charge, for Microsoft Windows, for Linux and other Unix systems, and for Macintosh systems. It is available through the Comprehensive R Archive Network (CRAN). Go to http://cran.r-project.org/, and find the nearest mirror site. A huge range of packages, contributed by specialists in many different areas, supplement base R. The development model has proved effective in marshaling high levels of computing expertise for continuing improvement, for identifying and fixing bugs, and for responding quickly to the evolving needs and interests of the statistical community. The R Task Views web page² lists packages that handle some of the more common R applications. It has become an increasing challenge to keep pace with the new and/or improved abilities that R packages, new and old, continue to develop. Those who rely heavily on R for their day-to-day work will do well to keep attuned to major changes and developments.

The R system has brought into a common framework a huge range of abilities that extend beyond the data analysis and associated data manipulation and graphics abilities that are the focus of this text. Examples include drawing and coloring maps, reading and handling shapefiles, map projections, plotting data collected by balloon-borne weather instruments, creating color palettes, manipulating bitmap images, solving sudoku puzzles, creating magic squares, solving ordinary differential equations, and processing various types of genomic data. Help files and

² https://cran.r-project.org/web/views/.

Preface xxi

vignettes that are included with packages are a large reservoir of information on the methodologies that they implement.

There are several graphical user interfaces (GUIs) that can be highly helpful in accessing a restricted range of R abilities – examples are *BlueSky*, *Rcmdr*, *R-Instat*, *jamovi*, and *rattle*. Access to the fill range of abilities that R and R packages make available will require use of the command line.

RStudio is a widely used R interactive development environment (IDE) for tasks that include viewing history, debugging, managing the workspace, package management, and data input and output. It has features that greatly assist project management and package development.

Among systems that have the potential to challenge R's dominance for data analysis, Julia (julialang.org/) seems particularly interesting. Relative to R, it has high computational efficiency. It has the potential to develop or adapt a range of packages that together match what R packages offer.

Changes and Additions from Data Analysis and Graphics Using R

Chapters 1–5 of *Data Analysis and Graphics Using R*, third edition (Maindonald and Braun, 2010) have been amalgamated and condensed somewhat into Chapters 1–3 of the present book. Here, the focus has moved, from including extensive R tutorial content in the text, to pointing users to the extensive R help resources now available both on the web and in printed form. Supplementary content available online includes R Markdown scripts, one for each chapter, that can be processed to reproduce all computer output, including tables and graphs. This content is available at https://jhmaindonald.github.io/PGRcode.

Concerns about reproducibility (or, in the terminology we prefer, "replicability"), especially in wet laboratory biology and in psychology, have attracted extensive attention in the pages of Nature, Science, $The\ Economist$, psychology journals, and elsewhere. The uses and limitations of p-values have been an important part of the discussion. Chapter 1 now has a much extended discussion of their use and role, leading on to the wider discussion of replicability issues. Information statistics (AIC, AICc, and BIC) get more detailed attention.

The treatment of p-values extends to noting the new possibilities that arise when there are, potentially, hundreds, or thousands, or more, p-values. The false discovery rate estimates that are then available are more informative, and relate more directly to the questions that are commonly of experimental interest, than p-values. The new Section 9.5 takes up these ideas as they apply to the analysis of RNA-Seq gene expression data.

Other topics that get new or increased attention include: the modeling of extrabinomial or extra-Poisson variation; exponential time series, including their use in forecasting; seasonality; spline smooths with time series error terms; fitting monotonic increasing or decreasing response curves; and quantile regression automatic choice of smoothing parameter.

Changes in the lme4 package for fitting mixed-effects models, and the implementation of the Kenward–Roger approach that is now available in the *afex* package,

xxii Preface

have required substantial rewrites. In Chapter 7, there is a new section on "A Mixed Model with a Betabinomial Error." The treatment of Principal Component Analysis and of multi-dimensional scaling is now followed by a new section on hierarchical and other forms of clustering.

The treatment of causal inference from observational data has been greatly extended to discuss the role of matching. There is some limited attention to the use of multiple imputation to fill in missing values in data where some observations are incomplete.

Source Files That Combine Text and R Code

Drafts of this text were created from Sweave source files that combine marked up code and text into one document, in a form that could then be processed using Yihui Xie's knitr package to give the LATEX files and associated R output and figures from which this text was generated. Rerunning and checking of code is a built-in part of the process, making the revising and updating of text and code easier and less error prone. The R Markdown plain text format, designed to be easier for novices to learn and master, can can be processed using knitr abilities in a very similar way. R Markdown is widely used for creating online content, for papers and books, and for the vignettes that many R packages use to supplement help pages. See https://rmarkdown.rstudio.com/.

Acknowledgements

The prefaces to the three editions of *Data Analysis and Graphics Using R* give names of those who provided helpful comment. For this new text, James Cone has provided useful comments. Trish Scott has helped with copyediting. Discussions on the Rhelp and R-devel email lists have contributed greatly to insight and understanding. The failings that remain are, naturally, our responsibility.

This text has drawn on data from many different sources. Following the references is a list of data sources (individuals and/or organizations) that we wish to thank and acknowledge. Thanks are due also to the many researchers whose discussions with us have helped stimulate thinking and understanding, and who in many instances have given us access to their data. We apologize to anyone that we may have inadvertently failed to acknowledge.

Too often, data that have become the basis for a published paper are not made available in any form of public record. The data may not find their way into any permanent record, and cease to be available for checking the analysis, for work that builds on what can be learned when data from multiple sources are brought together, to try a new form of analysis, or for use in teaching. In areas where data are as a matter of course kept available for future researchers to use, this has been a major contributor to advances in scientific understanding. Those benefits can and should extend more widely. Thanks are due to Beverley Lawrence for her efforts as copy-editor, and to Cambridge University Press staff who assisted us through the copy-editing and publication process – Roger Astley, Natalie Tomlinson, Anna Scriven, and Clare Dennison.

Preface xxiii

Notes for Readers

For many readers, a largely "learn as one goes" approach to mastering what they need to know of R will work well. For this, they can look for the mix of sources of tutorial content that works best for them – online tutorial content such as is noted in Section 1.11, books and other printed material, results from web searches, and such guidance as is provided in Appendix A. We encourage readers who are new to R to skim over the content of Appendix A before or as they work through the first chapter.

A complete set of R code, together with other supplementary material, is available from https://jhmaindonald.github.io/PGRcode.

Graphs and Graphics Packages

In Chapter 1, simplified code is given for figures that do not involve relatively complicated code. In later chapters, code is given only for those figures that are specifically targeted at the methodology under discussion.

The main graphics packages that will be used are the base graphics package, lattice and latticeExtra, and ggplot2. The plot() and related functions in base graphics directly generate a plot. With lattice and ggplot2 functions, an alternative to directly creating a plot is to save the output as a graphics object that can be further updated and/or modified before use to create a plot.

Accessing Data and Functions from Packages

A number of packages are automatically loaded, with their functions and datasets then available, at the start of a new R session. For functions and datasets in packages that are not already available, there is a choice between using library() or an equivalent to make all datasets and functions from the package available, or using code such as lattice::xyplot() (execute the lattice function from the lattice package) or DAAG::cuckoos (the cuckoos dataset from the DAAG package) whenever such a function or dataset is required.

Conventions

Starred headings identify more technical discussions that can be skipped at a first reading. Item numbers for more technical and/or challenging exercises are likewise starred.

Comments, prefaced by # or for extra emphasis by ##, will often be included in code chunks. Where code is included in comments, it will be surrounded by back quotes, as in `species ~ length` in the final line of code that now follows:

```
| ## Code for a stripped down version of Figure 1.1A | library(latticeExtra)  # The 'lattice' package will be loaded & attached also cuckoos <- DAAG::cuckoos  ## Panel A: Dotplot without species means added | dotplot(species ~ length, data=cuckoos)  ## `species ~ length` is a 'formula'
```