PHYSICS AND ENGINEERING OF GRADED-INDEX MEDIA

Optical materials with varying refractive indices are called graded-index (GRIN) media and they are widely used within many industries, including telecommunications and medical imaging. Another recent application is space division multiplexing, an enormously improved technique for optical data transmission. The book synthesizes recent research developments in this growing field, presenting both the underlying physical principles behind optical propagation in GRIN media and the most important engineering applications.

The principles of wave optics are employed for solving Maxwell's equations inside a GRIN medium, ensuring that diffractive effects are fully included. The mathematical development builds gradually and a variety of exact and approximate techniques for solving practical problems are included, in addition to coverage of modern topics such as optical vortices, photonic spin-orbit coupling, photonic crystals, and metamaterials. This text will be useful for graduate students and researchers working in optics, photonics, and optical communications.

GOVIND P. AGRAWAL is James C. Wyant Professor of Optics at the University of Rochester. He is a Fellow of Optica, a Life Fellow of the IEEE, and a Distinguished Fellow of the Optical Society of India. He has been awarded the IEEE Photonics Society Quantum Electronics Award, the Riker University Award for Excellence in Graduate Teaching, the Esther Hoffman Beller Medal, the Max Born Award of Optica, and the Quantum Electronics Prize of the European Physical Society. He has also served as Editor-in-Chief for the *Optica Journal Advances in Optics and Photonics*. He is author, with Malin Premaratne, of *Theoretical Foundations of Nanoscale Quantum Devices* (Cambridge University Press, 2021).

PHYSICS AND ENGINEERING OF GRADED-INDEX MEDIA

GOVIND P. AGRAWAL University of Rochester

Cambridge University Press & Assessment 978-1-009-28207-9 — Physics and Engineering of Graded-Index Media Govind P. Agrawal Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781009282079 DOI: 10.1017/9781009282086

© Govind P. Agrawal 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

A catalogue record for this publication is available from the British Library.

ISBN 978-1-009-28207-9 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Dedicated to my grandchildren

Contents

	Preface			<i>page</i> xiii
	List c	of Acror	nyms	XV
1	Intro	duction		1
	1.1	Histo	orical Perspective	1
	1.2	Refra	active-Index Profiles	3
	1.3 Relevant Optical Processes			5
		1.3.1	Power-Loss Mechanisms	6
		1.3.2	Chromatic Dispersion	7
		1.3.3	Intensity Dependence of Refractive Index	10
	1.4	GRI	N Materials and Fabrication	11
	1.5	Over	view of Book's Contents	14
2	Wave Propagation		19	
	2.1	Wave	e Equation for a GRIN Medium	19
		2.1.1	Frequency-Domain Approach	20
		2.1.2	Weakly Guiding Approximation	21
2.2 Mode-Based Technique		23		
		2.2.1	Hermite–Gauss Modes	24
		2.2.2	Laguerre–Gauss Modes	26
2.3		Powe	er-Law Index Profiles	30
		2.3.1	WKB Approximation	31
		2.3.2	Number of Modes and Propagation Constants	32
	2.4	Moda	al Excitation and Interference	34
		2.4.1	Modal Coupling Efficiency	34
		2.4.2	Multimode Interference	37
		2.4.3	Excitation of a Specific Mode	38
		2.4.4	Intermodal Dispersion	39

viii		Contents	
	2.5	Optical Propagation in GRIN Media	42
		2.5.1 Quantum-Mechanical Approach	42
		2.5.2 Moment-Based Quantum Technique	43
		2.5.3 Variational Method	45
		2.5.4 Eikonal-Based Technique	49
3	Focus	sing and Self-Imaging	55
	3.1	Geometrical-Optics Approximation	55
		3.1.1 The Ray Equation and Its Solution	56
		3.1.2 Meridional and Skew Rays	57
		3.1.3 ABCD Matrix and Ray Tracing	59
	3.2	Wave-Optics Description	60
		3.2.1 Propagation Kernel for a GRIN Medium	60
		3.2.2 Self-Imaging in Parabolic GRIN Media	62
		3.2.3 Gaussian-Beam Propagation	64
		3.2.4 Experiments on Self-Imaging	68
	3.3	Focusing and Imaging by a GRIN Lens	69
		3.3.1 Focusing by a GRIN Lens	69
		3.3.2 Imaging by a GRIN Lens	72
	3.4	Applications of GRIN Devices	75
		3.4.1 GRIN Rods as a Planar Lens	75
		3.4.2 Medical Imaging	76
		3.4.3 Fiber-Optic Sensing	78
		3.4.4 Fiber-Optic Tweezers	80
4	Dispe	ersive Effects	84
	4.1	Impact of Chromatic Dispersion	84
		4.1.1 Propagation Equation for Mode Amplitudes	85
		4.1.2 DGD-Induced Broadening of Pulses	87
		4.1.3 GVD-Induced Pulse Broadening	88
	4.2	Average Pulse Broadening	90
		4.2.1 Impulse-Based Model	91
		4.2.2 Extension to Gaussian Pulses	92
	4.3	Random Mode Coupling	93
		4.3.1 Coupled-Mode Equations	94
		4.3.2 Polarization-Mode Dispersion	95
		4.3.3 Intermodal Power Transfer	97
		4.3.4 Spatiotemporal Fluctuations	100
	4.4	Non-modal Approach	101
		4.4.1 Spatiotemporal Propagation Equation	101

	Contents	ix
	4.4.2 Simplified Time-Domain Equation	102
	4.4.3 Frequency-Domain Solution	104
4.5	Applications	105
	4.5.1 Optical Communication Systems	105
	4.5.2 Biomedical Imaging	107
5 Nonl	inear Optical Phenomena	111
5.1	Kerr Nonlinearity	111
	5.1.1 Kerr-Induced Self-Focusing	111
	5.1.2 Impact of Self-Focusing on Self-Imaging	112
	5.1.3 Moment-Based Approach	116
5.2	Pulsed Optical Beams	117
	5.2.1 Frequency Chirp and Self-Phase Modulation	117
	5.2.2 Nonlinear Propagation Equation for Pulses	120
	5.2.3 Spatiotemporal Solitons in GRIN Media	121
	5.2.4 Effective Time-Domain NLS Equation	124
5.3	Modulation Instability and Solitons	128
	5.3.1 Modulation Instability	128
	5.3.2 Graded-Index Solitons	131
	5.3.3 Impact of Intrapulse Raman Scattering	134
5.4	Modal Approach to Nonlinear Phenomena	137
	5.4.1 Coupled Multimode Nonlinear Equations	137
	5.4.2 Intermodal Cross-Phase Modulation	141
	5.4.3 Intermodal Four-Wave Mixing	142
	5.4.4 Intermodal Raman Scattering	143
	5.4.5 Intermodal Brillouin Scattering	145
5.5	Applications	146
	5.5.1 Supercontinuum Generation	146
	5.5.2 Spatial Beam Cleanup	151
	5.5.3 Second Harmonic Generation	154
	5.5.4 Saturable Absorber for Mode-Locking	156
6 Effec	cts of Loss or Gain	163
6.1	Impact of Optical Losses	163
6.2	Mechanisms for Providing Gain	165
	6.2.1 Doping with Rare-Earth Materials	166
	6.2.2 Stimulated Raman Scattering	169
	6.2.3 Four-Wave Mixing	172
6.3	Raman Amplifiers and Lasers	177
	6.3.1 Raman-Induced Beam Cleanup	177

Х	Contents		
		6.3.2 Evolution of Pump and Signal Beams	178
		6.3.3 Raman-Induced Narrowing of Signal Beam	180
		6.3.4 Experimental Results	183
	6.4	Parametric Amplifiers	187
		6.4.1 Intermodal Four-Wave Mixing	188
		6.4.2 Phase Matching by the Kerr Nonlinearity	189
		6.4.3 FWM Theory for GRIN Fibers	193
	6.5	Doped-Fiber Amplifiers and Lasers	196
		6.5.1 Amplification of CW Beams	196
		6.5.2 Amplification of Short Pulses	200
		6.5.3 Experimental Results	201
	6.6	Spatial Solitons and Similaritons	203
		6.6.1 Case of Planar Waveguides	204
		6.6.2 Axially Varying Gain	207
		6.6.3 Similaritons in GRIN-Fiber Amplifiers	208
7	Nonuniform GRIN Media		
	7.1	Axially Varying Refractive Index	214
		7.1.1 Geometrical-Optics Approach	215
		7.1.2 Wave-Optics Approach	217
	7.2	Tapered GRIN Fibers	219
		7.2.1 Linear Tapering	220
		7.2.2 Other Tapering Profiles	220
	7.3	Quantum-Mechanical Techniques	222
		7.3.1 Solution in the Adiabatic Approximation	223
		7.3.2 Invariant-Based Solution	224
		7.3.3 Solution in the Heisenberg Picture	225
		7.3.4 Solution Based on Group Theory	227
		7.3.5 Solution Based on Squeezing	230
	7.4	Periodic Axial Variations	232
		7.4.1 Sinusoidal Modulation of Core's Radius	233
		7.4.2 Quantum Approach	235
8	Vorte	ex Beams	241
	8.1	Basic Polarization Concepts	241
		8.1.1 Stokes Vector and Poincaré Sphere	241
		8.1.2 Linear and Circular Polarization Basis	244
	8.2	Vortex Beams with OAM	245
		8.2.1 Linearly Polarized Vortex Modes	245
		8.2.2 Circularly Polarized Vortex Modes	248

	Contents	
	8.2.3 Radial and Azimuthal Polarizations	2
8.3	Generation of Vortex Beams	2
	8.3.1 Structured Optical Elements	2
	8.3.2 Liquid Crystals and Metasurfaces	2
	8.3.3 Fiber-Based Devices	2
	8.3.4 Vortex Mode Sorters	2
8.4	Propagation of Vortex Beams	2
	8.4.1 Laguerre–Gauss Beams	2
	8.4.2 Gaussian Vortex Beams	2
	8.4.3 Airy and Bessel Vortex Beams	2
	8.4.4 Impact of Random Mode Coupling	2
8.5	Applications	2
9 Photo	onic Spin-Orbit Coupling	2
9.1	Mechanisms for Polarization Changes	2
	9.1.1 Anisotropy and Birefringence	2
	9.1.2 Origin of Photonic Spin-Orbit Coupling	2
9.2	Polarization-Dependent Phenomena	2
	9.2.1 Circular Birefringence and Geometrical Phase	2
	9.2.2 Photonic Spin-Hall Effect	2
	9.2.3 SAM-to-OAM Conversion	2
9.3	Vector Modes of GRIN Media	2
	9.3.1 Perturbative Approach	2
	9.3.2 Analytic Form of Vector Modes	2
9.4	Quantum-Mechanical Approach	2
	9.4.1 Approximate Solution	2
	9.4.2 Evolution of Coherent States	2
10 Photo	onic Crystals and Metamaterials	2
10.1	Basic Concepts	2
	10.1.1 Photonic Crystals	2
	10.1.2 Metamaterials	2
10.2	Graded-Index Photonic Crystals	2
	10.2.1 Graded-Index Planar Waveguides	3
	10.2.2 Photonic Crystal Fibers	3
10.3	GRIN Metamaterials	3
10.4	GRIN Metasurfaces	3
11 Impa	ct of Partial Coherence	3
11.1	Basic Concepts	3

xii	Contents	
	11.1.1 Degree of Coherence	316
	11.1.2 Partially Polarized Light	318
	11.1.3 Frequency-Domain Description	319
11.2	Propagation-Induced Changes in Coherence	320
	11.2.1 Evolution of Cross-Spectral Density	321
	11.2.2 Self-Imaging of Partially Coherent Beams	322
11.3	Partially Coherent Beams in GRIN Media	324
	11.3.1 Evolution of a Partially Coherent Gaussian Beam	325
	11.3.2 Changes in Spectral Intensity	326
	11.3.3 Changes in the Optical Spectrum	328
	11.3.4 Spectral Degree of Coherence	330
11.4	Partially Polarized Gaussian Beams	331
	11.4.1 Polarization Matrix of an Optical Beam	331
	11.4.2 Changes in the Degree of Polarization	332
	11.4.3 Changes in the State of Polarization	334
Append	<i>ix A</i> Quantum Harmonic Oscillator	337
Append	<i>ix B</i> Fractional Fourier Transform	340
Inde.	x	342

Preface

Maxwell proposed as early as 1854 the concept of a graded-index (GRIN) device, even before he developed his celebrated equations. Similar ideas were used by Wood in 1906 and by Luneberg in 1954 for the imaging applications. By 1970, GRIN glasses were fabricated whose refractive index varied radially in a cylindrical fashion. Such glasses were used either in a rod form as flat lenses or drawn into a fiber form, depending on the application. By the year 1980, GRIN fibers were used for the first generation of optical telecommunication systems. Plastic GRIN fibers were developed during the 1990s and are used routinely for transferring data between computers. More recently, silica GRIN fibers have been used for mode-division multiplexing in telecommunication systems and for observing novel nonlinear phenomena. The GRIN concept has also been extended to photonic crystals and metamaterials.

This book is intended to bring together a large amount of recent research material in a well-organized form such that a reader can develop physical understanding based on the fundamentals and apply it to emerging novel applications. Two earlier books in this area, published in 1978 and 2003, focused on the imaging applications and made use of mostly geometrical optics for describing light propagation inside a GRIN medium. The book employs the techniques of wave optics for solving Maxwell's equations inside GRIN media and ensures that the diffractive effects are fully included. The mathematical development builds up slowly and presents a variety of exact and approximate techniques for solving practical problems.

The primary role of this book is as a graduate-level text suitable for students and scientists working in the areas of optics, photonics, and imaging science. An attempt is made to include as much recent material as possible so that students are exposed to the recent advances in the areas covered by the book. The book can also serve as a reference text for researchers already engaged in or wishing to enter the fields where GRIN media are employed. The reference list at the end of each chapter is more elaborate than what is common for a typical textbook. The listing of recent

xiii

Cambridge University Press & Assessment 978-1-009-28207-9 — Physics and Engineering of Graded-Index Media Govind P. Agrawal Frontmatter More Information

xiv

Preface

research papers should be useful for researchers using this book as a reference. At the same time, students can benefit from it if they are assigned problems requiring reading of the original research papers. Although written primarily as a research monograph, portions of this book may be useful for graduate-level courses on the subjects of fiber optics, imaging science, and nonlinear optics.

Many persons have contributed to this book either directly or indirectly. It is impossible to mention all of them by name. I thank my Ph.D. and graduate students who took my courses related to electromagnetic theory, optical waveguides, and fiber-optic communication systems for their insightful questions and comments. I am grateful to my colleagues at the Institute of Optics of University of Rochester for numerous discussions and for providing a cordial and productive atmosphere. Last, but not least, I thank my family for understanding why I needed to spend considerable time on preparing the manuscript for this book instead of spending time with them. If the readers find the book useful, I would consider my time was well spent. For the color version of all figures in this book, please visit the resources on our website www.cambridge.org/9781009282079.

Acronyms

Each scientific field has its own jargon. Although an attempt was made to avoid extensive use of acronyms, many still appear throughout the book. Each acronym is defined the first time it appears in a chapter so that the reader does not have to search the entire text to find its meaning. As a further help, all acronyms are listed here in alphabetical order.

CCD	charge-coupled device
CVD	chemical vapor deposition
CW	continuous wave
DGD	differential group delay
EDFA	erbium-doped fiber amplifier
FFT	fast Fourier transform
FWHM	full width at half maximum
FWM	four-wave mixing
GRIN	graded-index
GVD	group-velocity dispersion
LCP	left-circularly polarized
LED	light-emitting diode
LP	linearly polarized
MMF	multi-mode fiber
NLS	nonlinear Schrödinger
OAM	orbital angular momentum
OSA	optical spectrum analyzer
PBG	photonic bandgap
PCF	photonic crystal fiber
PMD	polarization-mode dispersion
OPM	quasi-phase matching

xv

Cambridge University Press & Assessment 978-1-009-28207-9 — Physics and Engineering of Graded-Index Media Govind P. Agrawal Frontmatter <u>More Information</u>

xvi

Acronyms

RCP	right-circularly polarized
RIFS	Raman-induced frequency shift
RMS	root mean square
SAM	spin angular momentum
SBS	stimulated Brillouin scattering
SEM	scanning electron microscope
SHG	second harmonic generation
SLM	spatial light modulator
SMF	single-mode fiber
SNR	signal-to-noise ratio
SOP	state of polarization
SPM	self-phase modulation
SRS	stimulated Raman scattering
SSFM	split-step Fourier method
STML	spatiotemporal mode locking
TOD	third-order dispersion
WDM	wavelength-division multiplexing
WKB	Wentzel-Kramers-Brillouin
XPM	cross-phase modulation
ZDWL	zero-dispersion wavelength