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Introduction

This chapter provides an introduction to the subject known as gradient-index optics.

Section 1.1 provides a historical perspective on this subject before introducing the

essential concepts needed in later chapters. Section 1.2 is devoted to various types

of refractive-index profiles that are employed for making gradient-index devices,

with particular emphasis to the parabolic index profile because of its practical

importance. In Section 1.3, we discuss the relevant properties of such devices such

as optical losses, chromatic dispersion, and intensity dependence of the refractive

index occurring at high power levels. The focus of Section 1.4 is on the materials

and the techniques used for fabricating gradient-index devices in the form of a rod

or a thin fiber. Section 1.5 provides an overview of how the book is organized for

presenting a wide body of research carried out during the last 50 years in the area of

gradient-index optics.

1.1 Historical Perspective

Propagation of electromagnetic radiation in any medium is affected by its refractive

index, denoted as n(r, ω) because of its dependence on the frequency ω of the

radiation and on the location r within the medium. In the case of a homogeneous

material with uniform density, the dependence of n(r, ω) on r can be ignored.

However, the r dependence of the refractive index must be considered when density

variations occur, either naturally (such as in air) or are introduced artificially by

grading the refractive index of a material in some fashion. As an example, the

phenomenon of mirage results from an index gradient formed in air on a hot day.

Such index gradients change with time because of changes in air’s temperature and

pressure. When density variations in a medium are static (time independent), the

medium is referred to as a graded-index (GRIN) medium. We only consider static

density variations in this book.
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2 1 Introduction

Figure 1.1 Schematic illustration of the GRIN lenses proposed by (a) Maxwell
and (b) Luneberg. In both cases, refractive index is the largest at the center and
decreases radially toward’s the sphere’s surface.

Historically, Maxwell proposed more than 160 years ago the concept of a GRIN

device, known as the fisheye lens, even before he developed his celebrated equations

[1]. The refractive index for such a lens exhibits spherical symmetry and depends

on the magnitude of the vector r, but not on its direction. Similar ideas were used

by Wood [2] in 1906, and by Luneberg in 1954, for imaging applications [3]. Figure

1.1 shows schematically how optical rays bend because of changes in the refractive

index inside the GRIN lenses proposed by Maxwell and Luneberg. In both cases,

optical rays follow curved paths to come to focus at a point on the sphere’s surface.

With advances in glass technology, GRIN glasses could be fabricated by 1970 in

which the refractive index varied in a cylindrically symmetric fashion in the plane

normal to the direction of propagation. Such GRIN glasses were used either in a

rod form [4] or drawn into a fiber form [5], depending on the application. At the

same time, planar waveguides were developed in which the refractive index n(x)

varied only in one direction normal to the direction of propagation [6–8]. Two books

published around 1977 provided a comprehensive account of such GRIN devices

[9, 10].

The GRIN fibers were developed during the 1970s and their properties studied

extensively in view of their potential applications in the emerging area of optical

communications [11]. Indeed, by the year 1980, GRIN fibers were used for the

first generation of such systems [12]. Even though telecommunication systems

began using single-mode, step-index fibers by 1985, the development of new GRIN

materials and devices remained an active area of research. For example, plastic-

based GRIN fibers are used routinely for data-transfer applications [13]. One can

get a good idea of the intense activity during the 1980s and 1990s by consulting

several special issues of the Applied Optics journal [14]. Two books also describe

the progress realized during this period [15, 16].
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1.2 Refractive-Index Profiles 3

Figure 1.2 Schematic illustration of the refractive-index gradient along a GRIN
device.

Starting around 2010, the advent of space-division multiplexing for modern

telecommunication systems led to a renewed interest in the use of glass-based GRIN

fibers [12, 17, 18]. Since then, the investigation of nonlinear optical phenomena

in GRIN fibers has led to major advances. Among these are the topics such as

spatiotemporal modulation instability, GRIN solitons, and spatial beam cleanup

[19–21]. This book is intended to cover recent research advances and to provide, at

the same time, comprehensive coverage of electromagnetic wave propagation inside

a GRIN medium.

1.2 Refractive-Index Profiles

The focus of this book is on a GRIN medium whose refractive index varies in a

plane normal to the direction of propagation (commonly taken to be the z axis) in a

cylindrically symmetric fashion. Figure 1.2 shows schematically how the refractive

index varies in such a GRIN rod around its central axis, chosen to be the z axis of

the coordinate system. For practical reasons, the refractive index is the largest at the

central axis and decreases gradually in all radial directions moving away from the

center. In its most general form, the refractive index varies with the radial distance

ρ =
√

x2 + y2 as [22–24]

n2(ρ) =
{

n2
0[1 − 21f (ρ/a)] (0 ≤ ρ ≤ a)

n2
0(1 − 21) = n2

c (ρ ≥ a),
(1.2.1)

where n0 is the maximum value of the refractive index at the center and nc is its

minimum value at ρ = a, which is the radius of the cylindrical core enclosing the

GRIN region. The function f (x) governs shape of the index profile such that its

value is 1 for x = 1.

The parameter 1 can be deduced from Eq. (1.2.1) and has the form

1 =
n2

0 − n2
c

2n2
0

≈
n0 − nc

n0

. (1.2.2)
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4 1 Introduction

where the approximate form holds when nc differs from n0 by at most a few percent

so that 1 ≪ 1. This is often the case in practice for most GRIN devices. Using

1 ≪ 1, the refractive index in Eq. (1.2.1) can be approximated as

n(ρ) ≈
{

n0[1 − 1f (ρ/a)] (0 ≤ ρ ≤ a)

n0(1 − 1) = nc (ρ > a).
(1.2.3)

This equation shows that n(ρ) decreases as one moves away from the central axis up

to a distance ρ = a in a fashion dictated by the function f (ρ) and takes minimum

value nc in the cladding region ρ > a. The GRIN region of radius a constitutes the

core of such a GRIN device. The parameter 1, given in Eq. (1.2.2), represents the

fractional decrease in the refractive index across the core and its value is a design

parameter for GRIN devices.

The function f (x) governs the shape of the index profile for a GRIN device. This

shape depends on the application for which the device is fabricated for and can vary

over a wide range. In the case of planar waveguides, even an error function has been

used for the shape [8]. In the case of GRIN rods and fibers, it is common to employ

a power-law index profile with f (x) = xp, where the exponent p governs the shape

of the GRIN region. In this case, the refractive index in the core region varies as

[22–24]

n2(ρ) = n2
0

[

1 − 21

(ρ

a

)p]

(ρ ≤ a). (1.2.4)

Figure 1.3 shows how the refractive-index profile changes when p is varied in the

range 1–10 using n0 = 1.5 and 1 = 0.06. The case p = 2 corresponds to a parabolic

shape of the index profile. Note that the shape becomes closer to a step function for

a large value of p such that n remains close to n0 until one approaches the region

near ρ = a, where it decreases rapidly and takes the value nc. A step-index profile,

occurring in the limit p → ∞, is used routinely for making step-index fibers. Its

use confines light within the core of a step-index fiber through the phenomenon of

total internal reflection.

A parabolic index profile, realized for the choice p = 2 in Eq. (1.2.4), plays

an important role in the literature on GRIN media, and many GRIN devices are

designed with such a profile. In this case, we can write Eq. (1.2.4) in the simple

form

n2(ρ) = n2
0(1 − b2ρ2), b =

√
21/a. (1.2.5)

The parameter b is a measure of the index gradient such that its larger values indicate

a faster reduction in the refractive index as ρ is increased. This parameter will play

a prominent role in later chapters. As seen from the definition of b in Eq. (1.2.5), its

value depends both on the core’s radius a and the relative index difference 1.

Depending on the application, numerical values of the three parameters, a, n0,

and 1, associated with a GRIN device can vary over a wide range. We classify
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1.3 Relevant Optical Processes 5

Figure 1.3 Refractive index n(ρ) plotted as a function of the ratio ρ/a for several
values of the parameter p. The vertical dotted line at ρ = a separates the core and
cladding regions of such GRIN devices.

GRIN devices into two broad groups based on the core’s radius a. The value of a

exceeds 1 mm for GRIN rods used to make lenses and similar optical elements. In

contrast, a is restricted to much smaller values in the range of 10–30 µm for GRIN

fibers used for telecommunication applications, among other things. The parameter

1 also varies for these two groups of GRIN devices. Its typical value is around 0.01

for GRIN fibers but can exceed 0.05 for GRIN rods. The value of n0 depends on the

material used for making a GRIN device. In the case of silica glass, n0 is about 1.45.

For plastics, n0 is closer to 1.5.

We can estimate the value of the parameter b for GRIN rods and fibers from

Eq. (1.2.5) by using the values of a and 1. For GRIN rods, typical values of b are

near 0.3 mm−1. In contrast, b is around 5 mm−1 for GRIN fibers. Another relevant

parameter of a GRIN device is its numerical aperture (NA). As indicated in Section

3.1, it depends on the values of n0 and 1 as NA = n0

√
21. The NA of a GRIN rod

is close to 0.5 when n0 = 1.5 and 1 = 0.05. It is lower for GRIN fibers and has

values of 0.2 or less.

1.3 Relevant Optical Processes

All materials affect the electromagnetic radiation propagating through them. The

most relevant effects are (i) loss of power with distance owing to absorption and

scattering, (ii) chromatic dispersion or a frequency-dependent refractive index, and
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6 1 Introduction

(iii) intensity-dependent changes in the refractive index of the material. All three

are discussed in this section.

1.3.1 Power-Loss Mechanisms

Under quite general conditions, changes in the average power P of an optical beam

propagating through a GRIN medium are governed by the Beer–Lambert law [25]:

dP

dz
= −αP, (1.3.1)

where α is called the attenuation coefficient. It includes not only absorption of

power by the material but also other sources of power attenuation such as Rayleigh

scattering. If Pin is the power launched inside a GRIN medium of length L, the

output power Pout is found by integrating Eq. (1.3.1) to be

Pout = Pin exp(−αL). (1.3.2)

It is customary to express α in the decibel units using the relation [12]

α (dB/m) = −
10

L
log10

(

Pout

Pin

)

≈ 4.343α. (1.3.3)

Numerical values of the attenuation coefficient α depend both on the material

used to make a GRIN device and the wavelength of light launched into it. Figure

1.4 compares the wavelength dependence of measured loss in silica-glass fibers to

losses in two types of plastic fibers [26]. As seen there, plastic fibers exhibit much

larger losses (> 10 dB/km) compared to those of silica fibers, whose losses can be

reduced to below 0.2 dB/km in the wavelength region near 1550 nm. Absorption by

the plastic material is the source of high losses in plastic GRIN fibers.

In the case of optical glasses, absorption by the material of the glass is relatively

small in the visible and near-infrared regions. However, even small amounts of

impurities can increase this loss considerably. In the case of silica fibers, losses can

be reduced to below 1 dB/km by eliminating all impurities. For such fibers, the

dominant contribution to α arises from Rayleigh scattering, which is a fundamental

loss mechanism arising from local microscopic fluctuations in the density of glass

used to make the fiber. Glass molecules move randomly in the molten state and

freeze in place during cooling. Resulting density fluctuations produce random

fluctuations in the refractive index on a scale smaller than the optical wavelength λ.

These fluctuations are the source of Rayleigh scattering, whose cross section varies

as λ−4 [25]. As seen in Figure 1.4, silica’s loss resulting from Rayleigh scattering

exceeds 1 dB/km in the visible region but is reduced to below 0.2 dB/km in the

infrared region near 1550 nm used for modern optical communication systems.
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1.3 Relevant Optical Processes 7

Figure 1.4 Wavelength dependence of the loss in silica fibers and losses in two
types of plastic fibers. Note the logarithmic scale in units of dB/km. (After Ref. [26];
c©2014 IOP.)

1.3.2 Chromatic Dispersion

In the case of a GRIN medium, the refractive index n(ρ, ω) depends both on the

spatial location ρ and the frequency ω. Chromatic dispersion has its origin in the

frequency dependence of the refractive index. As we shall see in Section 2.1, it is the

frequency dependence of the propagation constant, defined as β(ω) = n(ω)(ω/c),

where c is the speed of light in vacuum, that governs the dispersive properties of any

material. When the spectrum of incident light is narrower compared to its central

frequency ω0, we can expand β(ω) in a Taylor series as

β(ω) = β0 + β1(1ω) + 1
2
β2(1ω)2 + . . . , (1.3.4)

where 1ω = ω − ω0 and βm = (dmβ/dωm)ω=ω0
.

In Eq. (1.3.4), β1 is related inversely to the group velocity vg and is responsible

for the group delay, τg = β1L, over a length L. The parameter β2, representing the

second derivative of β, is called the group-velocity dispersion (GVD) parameter.

This parameter will play an important role in chapters dealing with the propagation

of optical pulses inside a GRIN medium. For pulses shorter than 1 ps, it is sometimes

necessary to consider the cubic term containing β3 in the Taylor series in Eq. (1.3.4).

This parameter is referred to as the third-order dispersion parameter.

The dispersion parameter β1 can be calculated for any GRIN medium by taking

the frequency derivative of β as

β1 =
dβ

dω
=

ng

c
, ng = n + ω

dn

dω
, (1.3.5)
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8 1 Introduction

where ng is called the group index. It can be employed to calculate the GVD

parameter in the form

β2 =
dβ1

dω
=

1

c

dng

dω
. (1.3.6)

The sign of β2 depends on the sign of the derivative dng/dω and can be positive or

negative in different spectral regions for glasses used to make a GRIN device. A

related dispersion parameter D is also used for GVD; it is defined as

D =
dβ1

dλ
= −

λ

c

d2n

dλ2
. (1.3.7)

It is easy to show that D is related to β2 by the relation D = −(2πc/λ2)β2 and its

sign is opposite to that of β2.

On a fundamental level, the origin of dispersion is related to the atomic resonance

frequencies at which a material absorbs electromagnetic radiation. Far from such

resonances, the refractive index is well approximated by the Sellmeier equation [27],

n2(ω) = 1 +
M

∑

j=1

Bjω
2
j

ω2
j − ω2

, (1.3.8)

where ωj is the resonance frequency and Bj is the oscillator strength. The parameters

Bj and ωj are obtained empirically by fitting the measured dispersion curve to

Eq. (1.3.8) with M = 3. For pure silica glass, these parameters are found to be

[27] B1 = 0.6961663, B2 = 0.4079426, B3 = 0.8974794, λ1 = 0.0684043 µm,

λ2 = 0.1162414 µm, and λ3 = 9.896161 µm, where λj = 2πc/ωj for j = 1 to 3.

We can use Eq. (1.3.8) to calculate the frequency dependence of n and ng for

the silica glass without an index gradient. Figure 1.5 shows this dependence in

the wavelength range 0.6–1.6 µm. The group-delay parameter is obtained using

β1 = ng/c. Even though n decreases monotonically with λ in the entire wavelength

range, β1 exhibits a shallow minimum for silica glass at the specific wavelength,

λ = 1.276 µm, marked by the dotted vertical line in Figure 1.5. This wavelength is

called the zero-dispersion wavelength (denoted by λZD) because the GVD parameter

β2 vanishes at this wavelength.

Figure 1.6 shows how the dispersion parameters β2 and D vary with wavelength

λ for silica glass (no index gradient) using Eqs. (1.3.6) and (1.3.7). As expected,

both β2 and D vanish at λZD near 1.27 µm and change sign for longer wavelengths.

It is common to refer to negative values of β2 as the GVD being anomalous. The

curve marked d12 shows the differential group delay, d12 = β1(λ1) − β1(λ2), using

a reference wavelength λ2 = 0.8 µm. It shows the relative delay of a pulse as its

central wavelength λ1 is varied.
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Figure 1.5 Variation of refractive index n and group index ng with wavelength for
fused silica. The dotted line indicates the zero-dispersion wavelength.

Figure 1.6 Wavelength dependence of β2, D, and d12 for silica glass.

The situation changes considerably when silica glass is used to make a GRIN

device. It will be seen in Chapter 2, that the propagation constant β, and hence

all dispersion parameters, become mode-dependent for any GRIN medium. In

particular, one must consider the intermodal group delay resulting from different

values of β1 for different modes. This topic is covered in Sections 2.4 and 4.1 in the

context of optical pulses.
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10 1 Introduction

1.3.3 Intensity Dependence of Refractive Index

The response of any dielectric to electromagnetic radiation becomes nonlinear for

intense electric fields, and materials used for making GRIN devices are no exception.

Several common nonlinear effects have their origin in the Kerr effect. According to

it, the refractive index of any material increases at high intensities such that [28]

n(I) = n0 + n2I , (1.3.9)

where I is the local intensity and n0 is the low-intensity value of the refractive index.

The parameter n2 is called the Kerr coefficient. Its numerical value depends on the

material used to make a GRIN device and is about 3 × 10−20 m2/W for silica glass.

Adding the nonlinear contribution, the refractive index of a GRIN medium has

the form

n(r, ω, I) = n0(ω)[1 − 1f (r)] + n2I(r), (1.3.10)

where the dependence on all three variables is shown explicitly. The maximum value

of the nonlinear contribution, δn = n2I(r), occurs at the location where the intensity

peaks. Denoting this peak value with I0 = P0/Ae, where P0 is the peak power and

Ae is the effective beam area, δn = n2P0/Ae. As an example, if we use Ae = 1 cm2

and n2 = 3 × 10−20 m2/W, δn = 3 × 10−13 even at a relatively high peak power

of P0 = 1 kW. This value is too small to have any impact when a CW beam is

launched inside a GRIN rod.

There are two ways to enhance the nonlinear effects inside a GRIN medium. First,

the beam’s effective area Ae is reduced considerably when GRIN fibers are used

with a core radius close to 10 µm. Second, if a beam containing a train of short

optical pulses is used, the peak power P0 of the pulse can exceed 1 MW. Using

Ae = 10−10 m2 for a GRIN fiber, the nonlinear contribution to the refractive index

(about 3 × 10−4) is much smaller than 1, indicating that it is not likely to affect the

GRIN-induced self-imaging phenomenon discussed in Chapter 3. However, if the

GRIN fiber is long enough, the nonlinear contribution can affect both the temporal

and spectral features of a pulsed beam. As noted in Chapter 5, it also produces novel

spatiotemporal features that have been studied extensively in recent years [19–21].

The intensity dependence of the refractive index leads to several nonlinear effects;

the two most common ones are known as self-focusing and self-phase modulation

(SPM). The phenomenon of self-focusing is relevant for GRIN media because it can

compress an optical beam and compete with the GRIN-induced focusing. Moreover,

it leads to a beam’s collapse above a certain critical power level [28].

SPM is relevant only for pulsed optical beams. It produces a self-induced phase

shift that is different for different parts of the same pulse because of its intensity

dependence. Its magnitude can be obtained from Eq. (1.3.10). After a distance L,
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