

Case Studies in Star Formation

Case Studies in Star Formation offers an overview of our current observational and theoretical understanding in the molecular astronomy of star formation. The book is divided into six sections: the first introduces an overview of star formation and the essential language, concepts, and tools specific to molecular astronomy studies. Each subsequent section focuses on individual sources, beginning with a description of large-scale surveys. The volume covers low- and high-mass star formation, ionisation and photodissociation regions, and concludes with the extragalactic perspective. Conventional textbooks begin with principles, ending with a few convenient examples. Through copious examples, Case Studies reflects the reality of research, which requires the creative matching of ongoing observations to theory and vice versa, often raising as many questions as answers. This supplementary study guide enables graduate students and early career researchers to bridge the gap between textbooks and the wealth of research literature.

DUNCAN MACKAY is an honorary Senior Research Fellow at the University of Kent, Canterbury. He has four decades of teaching and research experience in astrophysics and pedagogical practice and has published and lectured professionally on cross-disciplinary issues for many years.

MARK THOMPSON is head of the School of Physics & Astronomy at the University of Leeds. He is an expert observational astronomer in the far-infrared to radio wavelength regime with more than 20 years of experience in observing Galactic star formation and international survey projects.

JAMES URQUHART is a Lecturer in Physics and Astrophysics and head of the Centre of Astronomy and Planetary Sciences at the University of Kent, Canterbury. He has contributed to almost 200 scientific publications in the areas of star formation and Galactic structure.

CAMBRIDGE OBSERVING HANDBOOKS FOR RESEARCH ASTRONOMERS

Today's professional astronomers must be able to adapt to use telescopes and interpret data at all wavelengths. This series is designed to provide them with a collection of concise, self-contained handbooks, which cover the basic principles peculiar to observing in a particular spectral region, or to using a special technique or type of instrument. The books can be used as an introduction to the subject and as a handy reference for use at the telescope or in the office.

Series Editors

Professor Richard Ellis, Department of Physics & Astronomy, University College London

Professor Steve Kahn, Department of Physics, Stanford University
Professor George Rieke, Steward Observatory, University of Arizona, Tucson
Dr Peter B. Stetson, Herzberg Institute of Astrophysics, Dominion Astrophysical
Observatory, Victoria, British Columbia

Books currently available in this series:

- Handbook of Infrared Astronomy
 I. S. Glass
- 4. *Handbook of Pulsar Astronomy* D. R. Lorimer and M. Kramer
- 5. *Handbook of CCD Astronomy*, Second Edition Steve B. Howell
- 6. *Introduction to Astronomical Photometry*, Second Edition Edwin Budding and Osman Demircan
- Handbook of X-ray Astronomy
 Edited by Keith Arnaud, Randall Smith, and Aneta Siemiginowska
- 8. Practical Statistics for Astronomers, Second Edition J. V. Wall and C. R. Jenkins
- 9. Introduction to Astronomical Spectroscopy Immo Appenzeller
- 10. Observational Molecular Astronomy David A. Williams and Serena Viti
- 11. Practical Optical Interferometry
 David F. Buscher

Case Studies in Star Formation A Molecular Astronomy Perspective

DUNCAN MACKAY University of Kent, Canterbury

MARK THOMPSON University of Leeds

JAMES URQUHART University of Kent, Canterbury

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,
New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781009277440
DOI: 10.1017/9781009277433

© Duncan MacKay, Mark Thompson, and James Urquhart 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall A catalogue record for this publication is available from the British Library.

ISBN 978-1-009-27744-0 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

in memory Geoffrey Hill Macdonald 1943–2020

Contents

	Prefe	ace	xiii
	List	of Acronyms	xv
Part	I In	troduction	1
1	An (Overview of Star Formation	3
	1.1	Introduction	3
		Low-Mass Star Formation (LMSF)	4
	1.2	Diffuse Clouds	4
	1.3	Molecular Clouds	5
	1.4	Dense Prestellar Cores	6
	1.5	Cold Protostellar Envelopes	8
	1.6	Jets and Disk Winds	9
	1.7	Protoplanetary Disks	10
		High-Mass Star Formation (HMSF)	11
	1.8	Dark Cloud to Main Sequence	11
	1.9	Hot Cores	13
	1.10	Compact HII Regions	14
	1.11	Photodissociation Regions (PDRs)	15
	1.12	Masers	16
		Molecular Astrophysics	17
	1.13	Molecular Excitation	17
	1.14	Level Populations	17
	1.15	Critical Densities and Excitation Temperatures	17
		Astrochemistry	18
	1.16	Gas-Phase and Grain-Surface Reactions	18
	1.17	Chemical Modelling	19
		Observational Basics	18
	1 18	Antenna Temperature and Ontical Depth	20

viii Contents

	1.19	Velocity Distribution	21
	1.20	Column Density, Beam Dilution, and Relative Abundance	21
	1.21	Rotation Diagrams	22
	1.22	Radiative Transfer Modelling	23
	Furth	ner Reading	23
Part	II L	ow-Mass Star Formation (LMSF)	25
2	Two	LMSFR Surveys Using IRAM and ALMA	27
	2.1	Introduction	27
	2.2	IRAM COMs	27
	2.3	IRAM Observations	29
	2.4	COMs Correlations	32
	2.5	Low-Mass YSO Chemical Model	36
	2.6	COMs Formation	37
	2.7	Increasing Resolution with ALMA	40
	2.8	Summary	44
3	IRA	S 16293 in Ophiuchus	46
	3.1	Introduction	46
	3.2	Dark Clouds and Streamers	46
	3.3	Filaments and Cores	49
	3.4	IRAS 16293-2422	52
	3.5	A Gas Bridge	55
	3.6	Deuterated Evolutionary Tracers	58
	3.7	Disk–Envelope Interface	60
	3.8	Disk Reservoirs	63
	3.9	Centrifugal Barriers	65
		Prebiotics	67
	3.11	Nitriles	70
	3.12	Summary	71
4	NGC	C 1333 in Perseus	72
	4.1	Introduction	72
	4.2	Envelope and Accretion	72
	4.3	Warm Carbon-Chain Chemistry (WCCC)	75
	4.4	IRAS2 and IRAS4	78
	4.5	COMs Ratios	80
	4.6	Comparisons	81
	4.7	C ₂ H	82
	4.8	Wider Sampling	84
	4.9	Summary	85

		Contents	ix
5	IRA	S 15398 in Lupus	88
	5.1	Introduction	88
	5.2	Nine Clouds	90
	5.3	IRAS 15398-3359 (Lupus I-1)	92
	5.4	The Bipolar Outflow	95
	5.5	H ₂ O with ALMA	101
	5.6	Summary	102
Par	t III H	igh-Mass Star Formation (HMSF)	105
6		HMSFR Surveys Using APEX and NOEMA	107
	6.1	Introduction	107
	6.2	ATLASGAL	108
	6.3	8 F	110
	6.4	NOEMA	115
	6.5	Physical Structure	116
	6.6	Chemical Structure	119
	6.7	Comparing Timescales	121
-	6.8	Summary	122
7	_	ttarius B2(N)	124
	7.1	Introduction	124
	7.2		124
	7.3		126
	7.4	COMs in Sgr B2(N)	127
	7.5 7.6	Complex Isocyanides in Sgr B2 (N)	130 133
•		Summary	
8		.96-0.02 in W43	134
	8.1		134
	8.2	Westerhout 43	134
	8.3	The W43 Sub-sources	135
	8.4 8.5	G29.96-0.02 #1 Star Formation Efficiency (SFE)	138 145
	8.6	G29.96 COMs	143
	8.7	Summary	147
9	Orio	on BN/KL	152
	9.1	Introduction	152
	9.2	OMC	153
	9.3	BN/KL	155
	9.4	The Four Features	158

x Contents

	9.5	Chemical Differentiations	161
	9.6	Summary	164
Part	IV Io	onisation	165
10	Two	HII Surveys Using JVLA and ALMA	167
	10.1	Introduction	167
	10.2	HII with the Jansky-VLA	167
	10.3	A Second Survey: ATOMS-ALMA	172
	10.4	UCHII or HCHII	173
	10.5	Summary	175
11	G24.	.78+0.08 in Scutum	176
	11.1	Introduction	176
	11.2	G24.78+0.08	176
	11.3	RRL Emission	181
	11.4	Multiple Sub-cores	182
	11.5	The A1 HCHII	183
	11.6	The A1 Molecular Disk	185
	11.7	Summary	187
12	G34.	.26+0.15 in Aquila	188
	12.1	Introduction	188
	12.2	G34.26+0.15	188
	12.3	UCHIIs A and B	191
	12.4	UCHII-C	193
	12.5	The Hot Core	197
	12.6	Displaced CH ₃ CN	199
	12.7	Summary	202
Part	V Pl	hotodissociation	203
13	ATL	ASGAL PDRs	205
	13.1	Introduction	205
	13.2	ATLASGAL	206
	13.3	Formation and Destruction of HCO/HCO ⁺	209
	13.4	Small Hydrocarbons in PDRs	211
	13.5	Summary	215
14		Orion Bar in M42	216
	14.1	Introduction	216
	14.2	The Orion Bar	217
	14.3	PDR Ionisation	221

		Contents	xi
	14.4	Molecular Dissociation	225
	14.5	Inhomogeneities and Proplyds	226
	14.6	Sulphur	228
	14.7	Summary	234
15	The	Horsehead Nebula in Orion	236
	15.1	Introduction	236
	15.2	Low-Flux Photodissociation	236
	15.3	Nitrile COMs	239
	15.4	Dust Extinction	243
	15.5	The Warm High-Density Case	244
	15.6	Sulphur	245
	15.7	Summary	251
Part	VI E	xternal Galaxies	253
16	Extr	agalactic Surveys: CANON and PHANGS-ALMA	255
	16.1	Introduction	255
	16.2	CANON	256
	16.3	Comparative Resolution	258
	16.4	PHANGS-ALMA	260
	16.5	Summary	266
17	ST1	6 and N113 in the Large Magellanic Cloud	267
	17.1	Introduction	267
	17.2	ST16	268
	17.3	Column Densities	270
	17.4	Comparative Abundances	273
	17.5	A Rotating Envelope	275
	17.6	N113	276
	17.7	Low-Metallicity COMs	277
	17.8	Summary	280
18	Star	burst Galaxy NGC 253	281
	18.1	Introduction	281
	18.2	Super Star Clusters	282
	18.3	Physical Parameters from Absorption Lines	287
		Outflow Dynamics	290
	18.5	Cluster Evolution Chemistry	291
	18.6	The Wider Molecular Sample	292
	18.7	Summary	294

xii Contents

Appendices		295
A	Galactic and Extragalactic Molecules	295
В	Observational and Modelling Databases	295
C	Wavelength, Frequency, and Energy	296
D	Generic Reaction Processes and Rates	296
E	Interstellar and Circumstellar Physical Parameters	297
F	Elemental Abundances	297
G	Interstellar Ice Composition	298
List of Research Journal Abbreviations		299
References		301
Chemical Index		315
Subject Index		318

Preface

Science is not reliable because it provides certainty. It is reliable because it provides us with the best answers we have at present.

- Carlo Rovelli†

To place *Case Studies* in its pedagogical context the reader could do worse than look to a statement by João Alves, on his appointment in October 2020 as the new editor of *Star Formation News (SFN)*, a broadsheet that has served the astronomy community for over 30 years (www.starformation.news). Alves wrote:

An essential goal of the SFN is to welcome young researchers into the field, help them navigate the community, and inspire them to make their mark. A paradox in today's incredibly easy access to large amounts of information is PhD students' hyper-specialization. In part, this is a structural problem arising from what is expected from young researchers to succeed. The SFN web will minimize this drawback and avoid dividing the SFN into subfields to expose the reader to a broader view, following Bo [Reipurth]'s original design. Given the current information growth, this will be a difficult path to tread, but the spirit will be kept. (SFN #334, 2020)

In the same spirit, for graduate students and early researchers, *Case Studies* introduces an overview of our current understanding of star formation from a molecular astronomy perspective, making no initial assumptions beyond that which we might expect of an undergraduate knowledge base in the more familiar facets of astronomy, physics, and chemistry. The Introduction identifies the key stages in the formation process of both low- and high-mass stars, linearly tracked from their diffuse interstellar raw material origins through to protostellar nuclear ignition and the early impact of that on the progenitor molecular envelope. This chapter also introduces some of the essential language and ideas specific to molecular astrophysics and astrochemistry, plus several observational and theoretical tools to be applied in subsequent

xiv Preface

chapters. The Introduction concludes by referencing some standard textbooks that offer greater detail on the subjects raised.

For the bulk of the book, each of its five parts begins with examples of recent large-scale surveys, before focusing on individual representative sources. Of the five, the first focuses on low-mass star formation, the second on high-mass star formation, the third on ionised regions and their interactions with hot molecular cores, the fourth on photodissociation regions, and the fifth takes us to star formation in galaxies beyond our own. Each chapter concludes with a brief summary of contents and links to the ongoing pedagogical purpose. Since *Case Studies* is targeted principally at postgraduate students and early researchers, unlike a standard textbook our motivation is to reflect some of the research realities in which a creative pursuit of understanding seeks to match unfolding observations to the theory that underpins them. This contrasts with the conventional teaching route more familiar at the undergraduate level in which we would begin with first principles and end with convenient examples.

Real life is not necessarily convenient, and typically questions more often than answers arise at the postgraduate level. In offering more detailed exemplars than are customarily found in textbooks, *Case Studies* presents a sufficient descriptive introduction to each individual source to give the uninitiated reader some sense of the wider Galactic and extragalactic environment. In addition, copious references are offered to the research literature readily available through the online Astrophysical Data System (ADS) operated by the Smithsonian Astrophysical Observatory (SAO) under a grant from NASA, known as 'adsabs' (https://ui.adsabs.harvard.edu). At various points throughout the text, the principal observational techniques of radio, millimetre, and submillimetre astronomy are placed in their practical research context, as are references to the major single-dish and interferometric instruments – past, present, and those approaching commission.

We hope the text may also be as useful to the teacher as to the student of a taught course in bringing together much disparate information, as well as to the self-studies of early researchers. Molecular astronomy specifically informs our understanding of the stages of star formation through the chemical tracers of physical conditions and dynamics. Both large-scale surveys and individual source studies reinforce or undermine what it is we think we know about the particular molecular species that we are using as an astronomical probe. This close interchange between observation, theoretical modelling, and laboratory experiment is the route through which molecular astronomers are continually contributing to the development of knowledge of star formation both within our own Galaxy and increasingly to that occurring far beyond.

[†] Carlo Rovelli, *Reality Is Not What It Seems: The Journey to Quantum Gravity*, trans. Simon Carnell and Erica Segre. London: Penguin Books (2017).

Acronyms

ALMA Atacama Large Millimetre Array APEX Atacama Pathfinder Experiment

ATLASGAL APEX Telescope Large Area Survey of the Galaxy

BIMA Berkeley Illinois Maryland Association
CSO Caltech Submillimetre Observatory

ESA European Space Agency
ESO European Space Observatory

FUSE Far Ultraviolet Spectroscopic Explorer
GLIMPSE Galactic Legacy Infrared Mid-Plane Survey

IRAC Infrared Array Camera

IRAM Institut de Radioastronomie Millimetrique

IRAS Infrared Astronomical Satellite
JCMT James Clerk Maxwell Telescope

JVLA Jansky Very Large Array JWST James Webb Space Telescope

e-MERLIN enhanced Multi-Element Remote-Linked Interferometer

Network

MIPS Multiband Imaging Photometer

NASA National Aeronautics and Space Administration

NOEMA Northern Extended Millimetre Array NRAO National Radio Astronomy Observatory

PdBI Plateau de Bure Interferometer

PILS Protostellar Interferometric Line Survey SCUBA Submillimetre Common User Bolometer Array

SMA Submillimetre Array VLA Very Large Array

WISE Wide Field Infrared Explorer

