Cambridge University Press & Assessment 978-1-009-27697-9 — Data Structures and Algorithms Using Python Subrata Saha Frontmatter More Information

Data Structures and Algorithms using Python

Efficiently using data structures to collect, organize, and retrieve information is one of the core abilities modern computer engineers are expected to have. Python currently is one of the most popular programming languages, and as such, it has become vital for students to understand this concept in this language.

This student-friendly textbook provides a complete view of data structures and algorithms using the Python programming language, striking a balance between theory and practical application. All major algorithms have been discussed and analysed in detail, and the corresponding codes in Python have been provided. Diagrams and examples have been extensively used for better understanding. Running time complexities are also discussed for each algorithm, allowing the student to better understand how to select the appropriate one.

The book has been written with both undergraduate and graduate students in mind. Each chapter ends with a large number of problems, including multiple choice questions, to help consolidate the knowledge gained. This will also be helpful with competitive examinations for engineering in India such as GATE and NET. As such, the book will be a vital resource for students as well as professionals who are looking for a handbook on data structures in Python.

Subrata Saha is Head of the Department of Computer Applications at Techno India Hooghly, West Bengal. He has more than 20 years of teaching experience in various subjects in computer science and engineering, including data structures and algorithms, programming in C, C++, Java, and Python, basic computation, operating systems, and so on. He has previously published Basic Computations and Programming with C with the Cambridge University Press in 2016.

Cambridge University Press & Assessment 978-1-009-27697-9 — Data Structures and Algorithms Using Python Subrata Saha Frontmatter <u>More Information</u>

Data Structures and Algorithms using Python

Subrata Saha

Cambridge University Press & Assessment 978-1-009-27697-9 — Data Structures and Algorithms Using Python Subrata Saha Frontmatter More Information

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, vic 3207, Australia

314 to 321, 3rd Floor, Plot No.3, Splendor Forum, Jasola District Centre, New Delhi 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781009276979

© Subrata Saha 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2023

Printed in India

A catalogue record for this publication is available from the British Library ISBN 978-1-009-27697-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-1-009-27697-9 — Data Structures and Algorithms Using Python Subrata Saha Frontmatter <u>More Information</u>

> To my beloved wife, Mrs Sriparna Saha, and my princess, Miss Shreya Saha, whose constant support motivated me to write this book

Cambridge University Press & Assessment 978-1-009-27697-9 — Data Structures and Algorithms Using Python Subrata Saha Frontmatter <u>More Information</u>

Contents

Preface Acknowledgments	xxi xxiii
1. DATA STRUCTURE PRELIMINARIES	1
1.1 Concept of Data Type	1
1.1.1 Primitive data type	1
1.1.2 User defined data type	2
1.1.3 Abstract data type	2
1.2 What Is Data Structure?	2
1.3 Definition and Brief Description of Various Data Structures	2
1.3.1 Array	3
1.3.2 Linked list	4
1.3.3 Stack	4
1.3.4 Queue	5
1.3.5 Graph	6
1.3.6 Tree	7
1.3.7 Heap	9
1.4 Data Structures versus Data Types	9
1.5 Operations on Data Structures	10
Data Structure Preliminaries At a Glance	11
Multiple Choice Questions	11
Review Exercises	14

viii Contents

2. IN	TRODU	CTION TO ALGORITHM	15
2.1	What	t Is an Algorithm?	15
2.2	Impor	rtance of an Algorithm	16
2.3	Differ	ent Approaches to Designing an Algorithm	16
2.4	Algor	ithm Design Tools: Flowchart and Pseudocode	16
	2.4.1	Flowchart	17
	2.4.2	Pseudocode	19
2.5	Contr	ol Structures Used in an Algorithm	20
2.6	Time	and space complexity	24
2.7	Best C	Case, Worst Case, Average Case Time Complexity	24
2.8	Time-	-Space Trade-off	25
2.9	Frequ	ency Count and Its Importance	25
2.1	0 Analy	zing Algorithms	27
	2.10.1	Big O Notation	27
	2.10.2	Ω (Omega) Notation	29
	2.10.3	Θ (Theta) Notation	30
	2.10.4	Other Useful Notations	30
2.1	1 Divid	e and Conquer Strategy	31
2.1	2 Dyna	mic Programming	32
2.1	3 Greed	ly Method	34
Int	roduction	n to Algorithm At a glance	35
Mι	ultiple Ch	poice Questions	36
Re	view Exei	rcises	39
3. AR	RRAY		41
3.1	Definit	ion	41
3.2	Creatin	g an Array	41
3.3	Accessi	ng Elements of an Array	45
3.4	Operati	ions on an Array	48
	3.4.1	Adding Elements to an Array	48
	3.4.2	Removing Elements from an Array	49
	3.4.3	Slicing of an Array	51
	3.4.4	Searching Element in an Array	53
	3.4.5	Updating Elements in an Array	54
	3.4.6	Concatenation of Arrays	55

		Contents ix
	3.4.7 Multiplication or Repetition on Array	56
3.5	Representation of Polynomials	57
3.6	Two Dimensional Array	59
3.7	Creation of a Two Dimensional Array	59
3.8	Accessing Elements of a Two Dimensional Array	62
3.9	Representation of a Two Dimensional Array in Memory	63
	3.9.1 Row Major Representation	63
	3.9.2 Column Major Representation	64
3.10	Operations on Two Dimensional Arrays	65
	3.10.1 Matrix Addition	65
	3.10.2 Matrix Multiplication	66
	3.10.3 Transpose of a Matrix	66
	3.10.4 Slicing of a Matrix	66
3.11	Sparse Matrix	68
3.12	Programming Examples	74
Arra	ay at a Glance	79
Muli	tiple Choice Questions	79
Revi	ew Exercises	81
Prob	olems for Programming	84
4. PYT	HON DATA STRUCTURES	85
4.1	Lists	85
	4.1.1 Creating a List	85
	4.1.2 Accessing List Elements	86
	4.1.3 Operations on a List	88
	4.1.3.1 Adding Elements to a List	88
	4.1.3.2 Removing Elements from a List	89
	4.1.3.3 Slicing of a List	91
	4.1.3.4 Searching Element in a List	93
	4 1 3 5 Undating Elements in a List	94
	4136 Concatenation of Lists	95
	4 1 3 7 Multiplication or Repetition of List	96
	4.1.4 Nested List	97
	4.1.5 List Functions	97
	416 List Methods	98
		20

x Contents

Cambridge University Press & Assessment 978-1-009-27697-9 — Data Structures and Algorithms Using Python Subrata Saha Frontmatter <u>More Information</u>

	4.1.7	Looping in a List	99
	4.1.8	List vs. Array	100
4.2	Tuple	rs	101
	4.2.1	Creating a Tuple	101
	4.2.2	Accessing Tuple Elements	102
	4.2.3	Operations on Tuple	103
	4.2.4	Nested Tuples	105
	4.2.5	Tuple Methods	105
	4.2.6	Looping in a Tuple	106
4.3	Sets		107
	4.3.1	Creating a Set	108
	4.3.2	Operations on a Set	108
		4.3.2.1 Adding Elements to a Set	109
		4.3.2.2 Removing Elements from a Set	109
		4.3.2.3 Searching an Element in a Set	110
	4.3.3	Set Methods	111
	4.3.4	Frozenset	114
4.4	Dictio	onaries	115
	4.4.1	Creating a Dictionary	115
	4.4.2	Accessing Values in a Dictionary	116
	4.4.3	Operations on a Dictionary	116
		4.4.3.1 Adding and Modifying an Element in a Dictionary	116
		4.4.3.2 Removing an Element from a Dictionary	117
		4.4.3.3 Membership Test in a Dictionary	118
	4.4.4	Looping in a Dictionary	119
	4.4.5	Nested Dictionaries	120
	4.4.6	Dictionary Methods	120
4.5	Comp	parative Study	122
4.6	Progr	amming Examples	122
Pyth	ion Dat	a Structures at a Glance	137
Mul	tiple Ch	noice Questions	138
Revi	ew Exe	rcises	141
Proł	olems fo	r Programming	143

© in this web service Cambridge University Press & Assessment

STRING		
5.1 Inu	oduction	
5.2 Bas	c String Operations	
5.2.	Consistentian and Depending Operation on Strings	
5.2. 5.2 Loc	2 Concatenation and Repeating Operation on Strings	
5.5 LOC	ping unough a string	
5.4 Stri	ig Methods	
5.5 Stri		
5.0 Reg	arm Matching Algorithms	
5.7 Pat	Prute Force Dattern Matching Algerithm	
5.7.	Knuth Morris Dratt Dattern Matching Algorithm	
5.8 Dro	gramming Example	
Stringe at	a Clance	
Multiple	a Guine	
Deview E	since Questions	
Drohlama	ercises	
1100101113	Joi 1 10grunning	
. RECURS	ION	
6.1 Def	ION inition	
6.1 Def 6.2 Typ	ION inition es of Recursion	
6.1 Def 6.2 Typ 6.3 Rec	ION inition es of Recursion ursion vs. Iteration	
6.1 Def 6.2 Typ 6.3 Rec 6.4 Son	ION inition es of Recursion ursion vs. Iteration ie Classical Problems on Recursion	
6.1 Def 6.2 Typ 6.3 Rec 6.4 Son 6.4.	ION inition es of Recursion ursion vs. Iteration le Classical Problems on Recursion l Towers of Hanoi Problem	
6.1 Def 6.2 Typ 6.3 Rec 6.4 Son 6.4. 6.4.	ION inition es of Recursion ursion vs. Iteration ne Classical Problems on Recursion 1 Towers of Hanoi Problem 2 Eight Queen Problem	
6.1 Def 6.2 Typ 6.3 Rec 6.4 Son 6.4. 6.4. 6.4.	ION inition es of Recursion ursion vs. Iteration ne Classical Problems on Recursion 1 Towers of Hanoi Problem 2 Eight Queen Problem antages and Disadvantages of Recursion	
6.1 Def 6.2 Typ 6.3 Rec 6.4 Son 6.4 6.4 6.5 Adv 6.6 Ans	ION inition es of Recursion ursion vs. Iteration ne Classical Problems on Recursion 1. Towers of Hanoi Problem 2. Eight Queen Problem antages and Disadvantages of Recursion lysis of Recursive Algorithms	
6.1 Def 6.2 Typ 6.3 Rec 6.4 Son 6.4 Son 6.4. 6.5 Adv 6.6 Ana 6.7 Pro	ION inition es of Recursion ursion vs. Iteration ne Classical Problems on Recursion 1 Towers of Hanoi Problem 2 Eight Queen Problem antages and Disadvantages of Recursion lysis of Recursive Algorithms gramming Examples	
6.1 Def 6.2 Typ 6.3 Rec 6.4 Son 6.4 Son 6.4. 6.4. 6.5 Adv 6.5 Adv 6.6 Ans 6.7 Pro <i>Recursion</i>	ION inition es of Recursion ursion vs. Iteration the Classical Problems on Recursion 1. Towers of Hanoi Problem 2. Eight Queen Problem trantages and Disadvantages of Recursion lysis of Recursive Algorithms gramming Examples <i>at a Glance</i>	
6.1 Def 6.2 Typ 6.3 Rec 6.4 Son 6.4 Son 6.4. 6.5 Adv 6.5 Adv 6.6 Ana 6.7 Pro <i>Recursior</i> <i>Multiple</i>	ION inition es of Recursion ursion vs. Iteration the Classical Problems on Recursion the Classical Problems on Recursion the Classical Problems on Recursion 2 Eight Queen Problem 2 Eight Queen Problem 2 antages and Disadvantages of Recursion lysis of Recursive Algorithms gramming Examples at a Glance Choice Questions	
6.1 Def 6.2 Typ 6.3 Rec 6.4 Son 6.4 Son 6.4. 6.5 Adv 6.6 Ana 6.7 Pro Recursion Multiple	ION inition es of Recursion ursion vs. Iteration the Classical Problems on Recursion the Classical Problems on Recursion the Classical Problems on Recursion 2 Eight Queen Problem 2 Eight Queen Problem antages and Disadvantages of Recursion lysis of Recursive Algorithms gramming Examples at a Glance Choice Questions cercises	

Cambridge University Press & Assessment 978-1-009-27697-9 — Data Structures and Algorithms Using Python Subrata Saha Frontmatter <u>More Information</u>

xii Contents

7. LINI	KED L	IST	207	
7.1	Definition			
7.2	Advantages of a Linked List			
7.3	Types of Linked Lists			
7.4	Implementing a Singly Linked List			
7.5	Operations on Singly Linked List			
	7.5.1	Creating a Singly Linked List	212	
	7.5.2	Displaying a Singly Linked List	213	
	7.5.3	Inserting a New Element in a Singly Linked List	214	
		7.5.3.1 Inserting an Element at the Beginning of a List	215	
		7.5.3.2 Inserting an Element at the End of a List	216	
		7.5.3.3 Inserting a Node after a Specified Node	217	
		7.5.3.4 Inserting a Node before a Specified Node	219	
	7.5.4	Deleting a Node from a Singly Linked List	220	
		7.5.4.1 Deleting the First Node	220	
		7.5.4.2 Deleting the Last Node	221	
		7.5.4.3 Deleting any Intermediate Node	222	
7.6	Appli	cations of a Singly Linked List	228	
7.7	Imple	menting a Circular Singly Linked List	233	
7.8	Opera	tions on a Circular Singly Linked List	233	
	7.8.1	Creating a Circular Singly Linked List	234	
	7.8.2	Displaying a Circular Singly Linked List	235	
	7.8.3	Inserting a New Element in a Circular Linked List	236	
		7.8.3.1 Inserting an Element at the Beginning of a Circular Linked List	237	
		7.8.3.2 Inserting an Element at the End of a List	239	
		7.8.3.3 Inserting a Node after a Specified Node	240	
		7.8.3.4 Inserting a Node before a Specified Node	242	
	7.8.4	Deleting a Node from a Circular Singly Linked List	243	
		7.8.4.1 Deleting the First Node	244	
		7.8.4.2 Deleting the Last Node	245	
		7.8.4.3 Deleting any Intermediate Node	246	
7.9	Appli	cations of a Circular Singly Linked List	253	
7.10	Imple	menting a Doubly Linked List	255	
7.11	Operations on a Doubly Linked List 256			

	Col	ntents xiii
	7.11.1 Inserting an Element at the Beginning of a Doubly Linked List	257
	7.11.2 Inserting an Element at the End of a Doubly Linked List	258
	7.11.3 Inserting a Node at a Specified Position in a Doubly Linked List	259
	7.11.4 Deleting a Node from a Doubly Linked List	261
	7.11.4.1 Deleting the First Node	261
	7.11.4.2 Deleting the Last Node	262
	7.11.4.3 Deleting any Intermediate Node	263
7.12	Implementation of a Circular Doubly Linked List	270
7.13	Operations on a Circular Doubly Linked List	271
	7.13.1 Inserting an Element at the Beginning of a Circular Doubly Linked L	list 271
	7.13.2 Inserting an Element at the End of a Circular Doubly Linked List	273
	7.13.3 Deleting the First Node from a Circular Doubly Linked List	274
	7.13.4 Deleting the Last Node from a Circular Doubly Linked List	276
7.14	Header Linked List	283
7.15	Advantages of a Header Linked List	296
7.16	Disadvantages of a Linked List	296
7.17	Programming Examples	297
Link	ed List at a Glance	303
Muli	tiple Choice Questions	304
Revi	ew Exercises	308
Prob	lems for Programming	309
0 CT A	CV	211
8. 51A		511
8.1	Definitions and Concept	311
8.2	Operations Associated with Stacks	312
8.3	Representation of a Stack	312
	8.3.1 Array Representation	312
	8.3.2 Python List Representation	314
	8.3.3 Linked Representation	317
8.4	Multiple Stacks	321
8.5	Applications of a Stack	321
	8.5.1 Parenthesis Checking Problem	322
	8.5.2 Conversion and Evaluation of Different Arithmetic Expressions	325
	8.5.2.1 Different Notations of Arithmetic Expressions	325
	8.5.2.2 Conversion of an Infix Expression into a Postfix Expression	327

kiv Co	ontents		
		8.5.2.3 Evaluation of a Postfix Expression	331
		8.5.2.4 Conversion of a Postfix Expression into an Infix Expression	334
		8.5.2.5 Conversion of an Infix Expression into a Prefix Expression	335
	8.5.3	Reversing any Sequence	339
	8.5.4	Recursion	341
Stac	k at a G	lance	343
Mul	tiple Ch	oice Questions	344
Revi	ew Exer	rcises	348
Proł	olems fo	r Programming	349
). QUI	EUE		351
9.1	Defini	itions and Concept	351
9.2	Opera	tions Associated with Queues	352
9.3	Repre	sentation of a Queue	352
	9.3.1	Array Representation of a Queue	353
	9.3.2	Circular Queue	360
		9.3.2.1 Operations on a Circular Queue	361
	9.3.3	Python List Representation of a Queue	369
	9.3.4	Linked Representation of a Queue	371
		9.3.4.1 Using a Header List	371
		9.3.4.2 Using a Single Circular Linked List with a Single Tail Pointer	375
9.4	Multi	ple Queues	377
9.5	Specia	al Queues	378
	9.5.1	DEQue	378
	9.5.2	Priority Queue	381
9.6	Applie	cations of a Queue	384
Que	ue at a	Glance	385
Mul	tiple Ch	oice Questions	385
Revi	ew Exer	rcises	387
Proł	olems fo	r Programming	388
0. TR	EES		391
10.1	Defin	ition and Concept	391
10.2	Termi	inology	392
10.3	Types	of Trees	393

	Contents _{XV}
10.3.1 General Tree	393
10.3.2 Forest	393
10.3.3 Binary Tree	394
10.3.4 Strictly Binary Tree	394
10.3.5 Complete Binary Tree	395
10.3.6 Full Binary Tree	395
10.3.7 Extended Binary Tree	396
10.3.8 Binary Search Tree (BST)	396
10.3.9 Expression Tree	397
10.3.10 Tournament Tree	398
10.4 Representation of a Binary Tree	398
10.4.1 Array Representation of a Binary Tree	398
10.4.2 Linked list Representation of a Binary Tree	399
10.5 Binary Tree Traversal	400
10.5.1 Preorder Traversal of a Binary Tree	401
10.5.2 Inorder Traversal of a Binary Tree	403
10.5.3 Postorder Traversal of a Binary Tree	404
10.5.4 Level Order Traversal of a Binary Tree	406
10.6 Construction of a Binary Tree from the Traversal Path	406
10.7 Conversion of a General Tree to a Binary Tree	408
10.8 Binary Search Tree (BST)	410
10.9 Operations on a Binary Search Tree – Recursive and Non-recursive	412
10.9.1 Insertion of a New Node in a Binary Search Tree	412
10.9.2 Searching a Node in a Binary Search Tree	414
10.9.3 Traversing a Binary Search Tree	415
10.9.4 Deletion of a Node from a Binary Search Tree	415
10.9.5 Find the Largest Node from a Binary Search Tree	420
10.9.6 Finding the Smallest Node from a Binary Search Tree	421
10.9.7 Counting the Total Number of Nodes in a Binary Search Tree	422
10.9.8 Counting the Number of External Nodes in a Binary Search Tre	e 422
10.9.9 Counting the Number of Internal Nodes in a Binary Search Tre	e 423
10.9.10 Finding the Height of a Binary Search Tree	423
10.9.11 Finding the Mirror Image of a Binary Search Tree	424
10.10 Threaded Binary Tree	436
10.10.1 Representation of a Threaded Binary Tree	439
- •	

i Contents	
10.10.2 Operations on an Inorder Threaded Binary Tree	439
10.10.2 Operations on an inorder Tineaded Dinary Tree	440
10.10.2.2. Inserting a New Node in an Inorder Threaded Binary	110
Search Tree	440
10.10.2.3 Deletion of a Node from an Inorder Threaded Binary	
Search Tree	443
10.11 AVL Tree	449
10.11.1 Operations on an AVL Tree	450
10.11.1.1 Insertiing a Node in an AVL Tree	450
10.11.1.2 Deleting a Node from an AVL Tree	455
10.12 Red–Black Tree	456
10.12.1 Inserting a New Node in a Red–Black Tree	457
10.12.2 Deleting a Node from a Red-Black Tree	460
10.13 Huffman Coding	462
10.14 M-way Search Trees	465
10.15 B Tree	466
10.15.1 Inserting a New Element in a B Tree	467
10.15.2 Deleting Elements from a B Tree	468
10.15.3 Searching an Element from a B Tree	470
10.16 B+ Tree	471
10.16.1 Inserting a New Element in a B+ Tree	471
10.16.2 Deleting Elements from a B+ Tree	473
10.17 B* Tree	476
10.18 2–3 Tree	476
10.19 Trie Tree	477
Strings at a Glance	478
Multiple Choice Questions	478
Review Exercises	481
Problems for Programming	485
. HEAP	487
11.1 Definition and Concept	487
11.2 Representation of a Heap in Memory	488
11.3 Operations on a Heap	488
11.3.1 Inserting a New Element in a Heap	488

	Contents xvii
11.3.2 Deleting an Element from a Heap	491
11.4 Applications of Heap	495
11.4.1 Implementing a Priority Queue Using Heap	495
Heap at a Glance	498
Multiple Choice Questions	499
Review Exercises	501
Problems for Programming	501
12.GRAPH	503
12.1 Definition and Concept	503
12.2 Terminology	504
12.3 Representation of a Graph	506
12.3.1 Adjacency Matrix Representation	506
12.3.2 Incidence Matrix Representation	507
12.3.3 Adjacency List Representation	508
12.3.4 Adjacency Multi-list Representation	509
12.4 Operations on a Graph	511
12.4.1 Insertion Operation	511
12.4.2 Deletion Operation	511
12.4.3 Graph Traversal	521
12.4.3.1 Breadth First Search Algorithm	521
12.4.3.2 Depth First Search Algorithm	525
12.5 Minimum Spanning Tree	528
12.5.1 Prim's Algorithm	529
12.5.2 Kruskal's Algorithm	532
12.6 Shortest Path Algorithm	537
12.6.1 Within a Given Source and Destination	537
12.6.2 Among All Pairs of Vertices	542
12.7 Applications of Graph	549
Graph at a Glance	549
Multiple Choice Questions	550
Review Exercises	553
Problems for Programming	554

Cambridge University Press & Assessment 978-1-009-27697-9 — Data Structures and Algorithms Using Python Subrata Saha Frontmatter <u>More Information</u>

xviii Preface

13. SEARCHING AND SORTING	557
13.1 Introduction to Searching	557
13.1.1 Linear Search	558
13.1.2 Binary Search	559
13.1.3 Interpolation Search	564
13.2 Introduction to Sorting	566
13.2.1 Bubble Sort	567
13.2.2 Selection Sort	571
13.2.3 Insertion Sort	574
13.2.4 Quick Sort	577
13.2.5 Merge Sort	583
13.2.6 Heap Sort	587
13.2.7 Radix Sort	591
13.2.8 Shell Sort	594
13.3 Comparison of Different Sorting Algorithms	598
13.4 Concept of Internal and External Sorting	598
Searching and Sorting at a Glance	598
Multiple Choice Questions	600
Review Exercises	602
Programming Exercises	604
14. HASHING	605
14.1 Definitions and Concept	605
14.2 Hash Functions	607
14.2.1 Division Method	607
14.2.2 Multiplication Method	608
14.2.3 Mid-square Method	609
14.2.4 Folding Method	610
14.2.5 Length Dependent Method	610
14.2.6 Digit Analysis Method	611
14.3 Collision Resolution Technique	612
14.3.1 Open Addressing	612
14.3.1.1 Linear Probing	613
14.3.1.2 Quadratic Probing	615

	Contents xix
14.3.1.3 Double Hashing	617
14.3.2 Chaining	620
14.4 Rehashing	623
14.5 Applications of Hashing	623
Hashing at a Glance	623
Multiple Choice Questions	624
Review Exercises	627
Appendix: Answers of Multiple Choice Questions	629
Index	633

Cambridge University Press & Assessment 978-1-009-27697-9 — Data Structures and Algorithms Using Python Subrata Saha Frontmatter More Information

Preface

In computer science and engineering, data structure and algorithm are two very important parts. Data structure is the logical representation of data, so that insertion, deletion, and retrieval can be done efficiently, and an algorithm is the step-by-step procedure to solve any problem. By studying different data structures, we are able to know their merits and demerits, which enriches our knowledge and our ability to apply the appropriate data structures at proper places when we try to write new applications. Studying different standard algorithms provides us much knowledge about solving new problems. Both data structures and algorithms are interrelated and are complementary to each other. By studying both data structures and algorithms, we may acquire a solid foundation of writing good code. This comprehensive knowledge helps to understand new frameworks as well.

With the studying of data structures and algorithms, it is very important to implement them using proper languages. Several books have been written on this topic using the C language. But today Python has become very popular because of its features such as being easy, open source, object oriented, portable, multi-threaded, extensive libraries, embeddable, etc. Hence, in this book data structures and algorithms are implemented using Python.

About the Book

This book is written to serve the purposes of a textbook for undergraduate courses of computer science and information technology and for undergraduate and postgraduate courses of computer application where data structure is one of the subjects in the syllabus. In this book different data structures and algorithms are discussed in a lucid manner so that students can understand the concept easily. All the relevant data structures and their operations are discussed with diagrams and examples for better understanding. After discussing relevant algorithms in detail, the algorithmic representation and the corresponding code in Python are given. Various programming examples along with new

Cambridge University Press & Assessment 978-1-009-27697-9 — Data Structures and Algorithms Using Python Subrata Saha Frontmatter <u>More Information</u>

xxii Preface

problems for practice and a set of MCQ questions at the end of each chapter increase the self-learning process of the students.

The salient features of this book are:

- This book is written in very simple English for better understanding the complex concepts.
- In order to make the presentation visually interactive for students, neat labelled diagrams are provided wherever necessary. For each topic, explanations are clear and concise, avoiding verbosity as much as possible.
- Each topic is discussed in detail with proper examples.
- Algorithms are presented with algorithmic representation as well as with the corresponding code in Python.
- Complexity analysis is discussed for almost all problems discussed in this book and in very lucid manner for better understanding.
- A large number of solved programming examples.
- MCQ questions and their solutions.

Cambridge University Press & Assessment 978-1-009-27697-9 — Data Structures and Algorithms Using Python Subrata Saha Frontmatter More Information

Acknowledgments

I thank my beloved students for their constant motivation which made me write this book. My students are extremely fond of and fascinated by my 'teaching from the ground up' style and their demand inspired me to write this book. My heartiest thanks to them.

I would like to thank my student Sayandip Naskar for drawing the figures of stack and queue.

My heartiest thanks to my family members and friends for their constant support, encouragement, and unconditional love, which helped to conclude the book.

Finally, I would like to thank all the reviewers of this book for their critical comments and suggestions. I convey my sincere gratitude to Mr Agnibesh Das and the entire editing team at Cambridge University Press, India, for their great work.