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General Introduction

Turbulence is often defined as the chaotic state of a fluid. The example that imme-

diately comes to mind is that of water: turbulence in water takes the form of eddies

whose size, location, and orientation are constantly changing. Such a flow is char-

acterized by a very disordered behavior difficult to predict and by the existence

of multiple spatial and temporal scales. There are many experiments of everyday

life where the presence of turbulence can be verified: the agitated motions of a

river downstream of an obstacle, those of smoke escaping from a chimney, or the

turbulence zones that one sometimes crosses in an airplane.

Experiencing turbulence at our scale seems easy since it is not necessary to use

powerful microscopes or telescopes. A detailed analytical understanding of tur-

bulence remains, however, limited because of the intrinsic difficulty of nonlinear

physics. As a result, we often read that turbulence is one of the last great unre-

solved problems of classical physics. This long-held message, found, for example,

in Feynman et al. (1964), no longer corresponds to the modern vision. Indeed, even

if turbulence remains a very active research topic, we have to date many theoreti-

cal, numerical, experimental, and observational results that allow us to understand

in detail a part of the physics of turbulence.

This book deals mainly with wave turbulence. However, wave turbulence is not

totally disconnected from eddy turbulence, from which the main concepts have

been borrowed (e.g. inertial range, cascade, two-point correlation function, spec-

tral approach). Moreover, very often, wave turbulence and eddy turbulence can

coexist as in rotating hydrodynamics. This is why a broad introduction to eddy tur-

bulence is given (Part I) before moving on to wave turbulence (Part II), giving this

book, for the first time, a unified view on turbulence. We will see that many results

have been obtained since the first steps taken by Richardson (1922), a century ago.

The many examples discussed in this book reveal that the classical presentation of

turbulence, based on the Navier–Stokes equations (Frisch, 1995; Pope, 2000), is

somewhat too simplistic because turbulence is found in various environments, in

various forms. If we restrict ourselves to the standard example of incompressible
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2 1 General Introduction

hydrodynamics, the simple introduction of a uniform rotation for describing geo-

physical fluids drastically changes the physics of turbulence by adding anisotropy.

In astrophysics, 99 percent of the visible matter of the Universe is in the form of

plasma, which is generally very turbulent, but plasma turbulence mixes waves and

eddies. The regime of wave turbulence, described in Part II, can emerge from a

vibrating steel plate; here, we are far from the classical image of eddies in water.

Finally, recent studies reveal that the cosmological inflation that followed the Big

Bang could have its origin in strong gravitational wave turbulence.

The objective of Part I, which follows this first chapter, is to present the funda-

mentals of turbulence. We will start with eddy turbulence, where the first concepts

and laws have emerged. We will limit ourselves to the most important physical

laws. The theoretical framework will be that of a statistically homogeneous turbu-

lence for which a universal behavior is expected. The problems of inhomogeneity

inherent to laboratory experiments will therefore not be dealt with. Through the

examples discussed, we will gradually reveal the state of knowledge in turbulence.

To help us in this task, we begin with a brief historical presentation.

1.1 Brief History

1.1.1 First Cognitive Advances

Leonardo da Vinci was probably the first to introduce the word turbulence (tur-

bulenza) at the beginning of the sixteenth century to describe the tumultuous

movements of water. However, the word was not commonly used by scientists

until much later.1

The first notable scientific breakthrough in the field of turbulence can be

attributed to Reynolds (1883): he showed experimentally that the transition

between the laminar and turbulent regimes was linked to a dimensionless num-

ber – the Reynolds number.2 The experiment, which can be easily reproduced in

a laboratory, consists of introducing a colored stream of the same liquid as cir-

culating in a straight transparent tube (see Figure 1.1). It can be shown that the

transition to turbulence occurs when the Reynolds number becomes greater than

a critical value. An important step in this discovery is the observation that the ten-

dency to form eddies increases with the temperature of the water, and Reynolds

knew that in this case the viscosity decreases. He also showed the important role

played by the development of instabilities in this transition to turbulence.

World War I was a time of further important advances. The war efforts in

Germany and, in particular, under the influence of Prandt in Göttingen, directed

1 For example, the book of Boussinesq (1897) still bears the evocative title: “Theory of the Swirling and
Tumultuous Flow of Liquids in Straight Beds with a Large Section.”

2 The Reynolds number measures the ratio between the inertial force and the viscous force. We will come back
to this definition in Section 1.3.
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1.1 Brief History 3

Figure 1.1 Historical experiment of Reynolds (1883) (top) and his observations (bottom).

The original device is kept at the University of Manchester.

the research in the field of aerodynamics to the study of the fall of bombs in

air or water. It is a question here of studying, for example, the drag of a sphere;
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4 1 General Introduction

this work was then used for the design of airplanes. After the war, research in

turbulence increased: for example, we can mention the results on the inhomoge-

neous effects due to walls in wind tunnel experiments (Burgers, 1925). But it is

with Richardson (1922) that a second major breakthrough in turbulence arrives:

in his book on weather predictions and numerical calculation.3 Richardson intro-

duced the fundamental concept of energy cascade. Inspired by the Irish writer J.

Swift, Richardson wrote “Big whirls have little whirls that feed on their velocity.

Little whirls have lesser whirls and so on to viscosity – in the molecular sense”

(page 66). We find here the idea of a cascade of eddies from large to small spatial

scales.

It is probably with this idea in mind that Richardson (1926) formulated the

empirical 4/3 law4 to describe the turbulent diffusion process. This law differs

from the one proposed by Einstein in 1905 on the diffusion of small particles

in a liquid (Brownian motion), which was in clear disagreement with turbulence

experiments where a much higher diffusion was found.5 The proposed new law

is characterized by a nonconstant diffusion coefficient Dℓ, which depends on the

scale being considered, such that:

Dℓ ∼ ℓ4/3 . (1.1)

This relationship reflects the fact that in a turbulent liquid the diffusivity increases

with the mean separation between pairs of particles. This scaling law is fundamen-

tal because we find there the premises of the exact four-fifths law of Kolmogorov

(1941a), with which it is in agreement dimensionally.

It was during this interwar period that the first works based on two-point

correlations emerged (Taylor, 1935),6 as well as works on the spectral anal-

ysis of fluctuations by Fourier transform, which have become the basis of

modern research in turbulence (Motzfeld, 1938; Taylor, 1938). The correlation

approach leads, in particular, to the Kármán–Howarth equation (von Kármán and

Howarth,1938) for an incompressible, statistically homogeneous, and isotropic7

hydrodynamic turbulence. This equation describes the fluid dynamics through

correlators – two-point measurements in physical space. As we will see in Chap-

ter 2, this result is central for the establishment of the exact four-fifths law of

Kolmogorov (1941a), which is not a dynamic equation but a statistical solution of

Navier–Stokes equations.

3 “Numerical calculation” here means calculation carried out by hand with a method essentially based on finite
differences.

4 This empirical law should not be confused with the exact four-thirds law which deals with structure functions
(see Chapter 2).

5 It is known that a cloud of milk dilutes more rapidly in tea if stirred with a spoon.
6 It is the British Francis Galton (1822–1911) who seems to have been the first to correctly introduce the

concept of correlation for statistical studies in biology.
7 This is the strong isotropy that is considered here, which we will return to in Section 1.4.
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1.1 Brief History 5

1.1.2 Kolmogorov’s Law and Intermittency

In the 1930s and under the leadership of the mathematician Kolmogorov, the

Soviet school became very active in turbulence. At that time, Kolmogorov was

working on stochastic processes and random functions. It was therefore natural

that he turned his attention to turbulence, where a pool of data was available.

Based on some of the work described in the Section 1.1.1, Kolmogorov and his

student Obukhov set out to develop a theory for the standard case of incompressi-

ble, statistically homogeneous, and isotropic hydrodynamic turbulence. Based, in

particular, on the Kármán–Howarth equation, Kolmogorov (1941a,b) established

the first exact statistical law of turbulence – known as the four-fifths law – which

relates a third-order structure function involving the difference of the component

in direction ℓ of the velocity between two points separated by the vector ℓ, the

distance ℓ, and the mean rate of dissipation of kinetic energy ε (〈〉 means the

ensemble average):8

−
4

5
εℓ = 〈[uℓ(x + ℓ) − uℓ(x)]3〉. (1.2)

To establish this universal law, Kolmogorov assumes that fully developed turbu-

lence becomes isotropic on a sufficiently small scale, regardless of the nature of

the mean flow. He also assumes that ε becomes independent of viscosity within

the limits of large Reynolds numbers (i.e. low viscosity); this is what is often

referred to today as the zeroth law of turbulence. After several years of research, a

first exact law was established for which it was possible to get rid of the nonlinear

closure problem. The trick used to achieve this was to relate the cubic nonlin-

ear term to the mean energy dissipation in the inertial range, that is, in a limited

range of scales between the larger scales where inhomogeneous effects can be felt,

and the smaller scales where viscosity efficiently damps the fluctuations. We will

return at length to the law (1.2) in Chapter 2. Kolmogorov’s law remained unno-

ticed for several years (outside the USSR). It was Batchelor (1946) who was the

first to discover the existence of Kolmogorov’s articles:9 he immediately realized

the importance of this work, which he shared with the scientific community at

the Sixth International Congress of Applied Mathematics held in Paris in 1946

(Davidson et al., 2011).

For his part, independently of Kolmogorov but inspired by the ideas of Richard-

son (1922), Taylor (1938), and the work by Millionschikov (1939, 1941), who was

another student of Kolmogorov, Obukhov (1941b) proposed a nonexact spectral

theory of turbulence based on the relationship:

8 Kolmogorov was probably the first to be interested in structure functions that are constructed from the differ-
ences and not from the products of a field (here the velocity field), as was the case with the Kármán–Howarth
equation.

9 The English version of the Russian papers had been received in the library of the Cambridge Philosophical
Society.
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6 1 General Introduction

∂E

∂t
+ D = T , (1.3)

with E the energy spectrum, D the viscous dissipation, and T the energy transfer

(in Fourier space). The artificial closure proposed is based on an average over

small scales. He obtained as a solution the energy spectrum:10

E(k) ∼ k
−5/3 , (1.4)

which is dimensionally compatible with Kolmogorov’s exact law. In extend-

ing this study, Obukhov was then able to provide a theoretical justification for

Richardson’s (1926) empirical 4/3 law of diffusion. Later, Yaglom (1949) obtained

a new exact law, applied this time to the passive scalar: this model describes how

a scalar evolves, for example the temperature or the concentration of a product, in

a turbulent fluid for which the velocity fluctuations are given.

For a short period of time Kolmogorov thought that the mean rate of energy

dissipation was the key to establishing a more general exact law describing the sta-

tistics at any order in terms of a velocity structure function. This general law would

have provided a complete statistical solution to the problem of hydrodynamic tur-

bulence. But in 1944, Landau11 pointed out the weakness of the demonstration

(proposed by Kolmogorov during a seminar), which we will come back to in

Chapter 2: it does not take into account the possible local fluctuations of ε, a

property called intermittency. It took about 20 years for Kolmogorov (1962) and

Oboukhov (1962) to propose, in response to Landau, a model (and not an exact

law) of intermittency based on a log-normal statistics which incorporates the exact

four-fifths law as a special case. Kolmogorov’s answer was given (in French) at a

conference held in Marseilles in 1961 to celebrate the opening of the Institut de

Mécanique Statistique de la Turbulence. This conference became famous because

it brought together for the first time all the major specialists (American, European,

and Soviet) on the subject. It was also during this conference that the first energy

spectrum in k
−5/3 measured at sea was announced (Grant et al., 1962).

Basically, the notion of intermittency is related to the concentration of dissi-

pation in localized structures of vorticity. As mentioned by Kolmogorov, inter-

mittency may slightly modify the −5/3 exponent of the energy spectrum, but its

most important contribution is expected for statistical quantities of higher orders

(the exact law is of course not affected). This new formulation is at the origin of

work, in particular, on the concept of fractal dimension as a model of intermittency

(Mandelbrot, 1974; Frisch et al., 1978) – see Chapter 2. It is interesting to note

that we already find the concept of fractional dimension in Richardson’s (1922)

book, where the study of geographical boundaries is discussed.

10 In general, this solution is called the Kolmogorov spectrum, but it would be more accurate to call it the
Kolmogorov–Obukhov spectrum. This spectrum was also obtained independently by other researchers, such
as Onsager (1945) and Heisenberg (1948).

11 Landau’s remark (Landau and Lifshitz, 1987) can be found in the original 1944 book (Davidson et al., 2011).
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1.1 Brief History 7

1.1.3 Spectral Theory and Closure

In this postwar period, the theoretical foundations of turbulence began to be estab-

lished. The first book exclusively dedicated to this subject is that of Batchelor

(1953), which still remains a standard reference on the subject: it deals with sta-

tistically homogeneous turbulence. From the 1950s, a major objective seemed to

be within the reach of theorists: developing a theory for homogeneous and iso-

tropic turbulence in order to rigorously obtain the energy spectrum. The work

of Millionschikov (1941) (see also Chandrasekhar, 1955) based on the quasi-

normal approximation (QN) had opened the way: this approximation – a closure –

assumes that moments of order four and two are related as in the case of a normal

(Gaussian) law without making this approximation for moments of order three

(which would then be zero, making the problem trivial). Kraichnan (1957) was

the first to point out that this closure was inconsistent because it violated some

statistical inequalities (realizability conditions), and Ogura (1963) demonstrated

numerically that this closure could lead to a negative energy spectrum for some

wavenumbers.

In this quest, Kraichnan (1958, 1959) proposed a sophisticated theory which

does not have the defects we have just mentioned: it is the direct interac-

tion approximation (DIA), which is based on field theory methods, a domain

in which Kraichnan was originally trained.12 The fundamental idea of this

approach is that a fluid perturbed over a wavenumber interval will have its

perturbation spread over a large number of modes. Within the limit L → +∞,

with L being the side of the cube in which the fluid is confined, this inter-

val becomes infinite in size, which suggests that the mode coupling becomes

infinitely weak. The response to the perturbation can then be treated in a sys-

tematic way. Under certain assumptions, two integro-differential equations are

obtained for the correlation functions in two points of space and two of time,

and the response function. The inferred prediction for the energy spectrum, in

k
−3/2, is, however, not in dimensional agreement with Kolmogorov’s theory, nor

with the main spectral measurements. Improvements were then made (Lagrangian

approach) to solve some problems (noninvariance by random Galilean transfor-

mation, Kolmogorov spectrum) (Kraichnan, 1966): this new theory can be seen

as the most sophisticated closure model.13 This work has led, in particular, to

the development of the EDQNM (eddy-damped quasi-normal Markovian) clo-

sure model (Orszag, 1970), still widely used today, to which we will return in

Chapter 3.

12 Kraichnan became interested in turbulence in the early 1950s while he was Einstein’s postdoctoral fellow.
Together, they searched for nonlinear solutions to the unified field equations.

13 In (strong) eddy turbulence, no exact spectral theory with an analytical closure has been found to date.
This contrasts with the (weak) wave turbulence regime, for which an asymptotic closure is possible (see
Chapter 4).
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8 1 General Introduction

1.1.4 Inverse Cascade

Two-dimensional hydrodynamic (eddy) turbulence is the first example where an

inverse cascade was suspected. The motivation for the study of such a system may

seem on the face of it surprising, but several works showed that a two-dimensional

approach could account for the atmospheric dynamics quite satisfactorily (Rossby

and collaborators, 1939). We now know that the rotation, or stratification, of the

Earth’s atmosphere tends to confine its nonlinear dynamics to horizontal planes.14

The first work on two-dimensional hydrodynamic turbulence dates back to the

1950s with, for example, Lee (1951), who demonstrated that a direct energy

cascade would violate the conservation of enstrophy (proportional to vorticity

squared), which is the second inviscid invariant (i.e. at zero viscosity) of the

equations. Batchelor (1953) had also noted at the end of his book that the exist-

ence of this second invariant should contribute to the emergence, by aggregation,

of larger and larger eddies. He concluded by asserting the very great differ-

ence between two- and three-dimensional turbulence. By using the two inviscid

invariants, energy and enstrophy, Fjørtoft (1953) was able on his part to demon-

strate, in particular with dimensional arguments, that the energy should cascade

preferentially towards large scales.

It is in this context, clearly in favor of an inverse energy cascade, that Kraichnan

became interested in two-dimensional turbulence. Using an analytical devel-

opment of Navier–Stokes equations in Fourier space, the use of symmetries,

and under certain hypotheses such as the scale invariance of triple moments,

Kraichnan (1967) rigorously demonstrated the existence of a dual cascade – that

is, in two different directions – of energy and enstrophy (see Chapter 3). This

prediction is in agreement with previous analyses and the existence of a direct

cascade of enstrophy and an inverse cascade of energy for which the proposed

(nonexact) spectrum is in k
−5/3.

The existence in the same system of two different cascades was quite new in

eddy turbulence. This prediction has since been accurately verified both experi-

mentally and numerically (Leith, 1968; Pouquet et al., 1975; Paret and Tabeling,

1997; Chertkov et al., 2007). The second-best-known system where an inverse

cascade exists is that of magnetohydrodynamics (MHD): using some arguments

from Kraichnan (1967), Frisch et al. (1975) deduced in the three-dimensional case

the possible existence of an inverse cascade of magnetic helicity, a quantity which

plays a major role in the dynamo process in astrophysics (Galtier, 2016). To date,

we know several examples of turbulent systems producing an inverse cascade (see,

e.g., the review of Pouquet et al., 2019).

14 Chapter 6 is devoted to inertial wave turbulence (i.e. incompressible hydrodynamic turbulence under a uni-
form and rapid rotation), for which it can be rigorously demonstrated that the cascade is essentially reduced
to the direction transverse to the axis of rotation. However, it can be shown in this case that the energy cascade
is direct.
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1.1 Brief History 9

Kraichnan’s (1967) discovery was made at a period when the theory of wave

turbulence, the regime that is the main subject of this book, was beginning to

produce important results. The brief history presented in Chapter 4 allows us to

appreciate the evolution of ideas on this subject, which finds a large part of its

foundations in eddy turbulence (spectral approach, inertial range, cascade, clo-

sure problem). In this context, a problem that attracted a lot of attention was that

of gravity wave turbulence (which is an example of surface waves). This prob-

lem deals with four-wave resonant interactions: in this case, there are two inviscid

invariants, energy and wave action. The first is characterized by a direct cascade

and the second by an inverse cascade. The study carried out15 by Zakharov and

Filonenko (1966) (see also Zakharov and Filonenko, 1967) focused only on the

energy spectrum. The authors obtained the exact solution as a power law asso-

ciated with energy, but curiously they did not focus on the second solution and

therefore did not immediately realize that it corresponded to a new type of cas-

cade. Starting from a similar study (involving four-wave resonant interactions)

on Langmuir wave turbulence by Zakharov (1967), in which the energy spectrum

had also been obtained, Kaner and Yakovenko (1970) found the second exact solu-

tion corresponding to an inverse cascade of wave action. It is thus in the field of

plasmas that the existence of a dual cascade was finally demonstrated in wave

turbulence.16

A major difference between the two turbulence regimes is that, unlike (strong)

eddy turbulence, (weak) wave turbulence theory is analytical (see Chapter 4). In

this case, one can develop a uniform asymptotic theory and obtain the dynamic

equations of the system and then, if they exist, its exact spectral solutions. It is

then possible to provide analytical proof of the type of cascade (direct or inverse).

It is also possible to prove the local character of turbulence (by a study of the

convergence of integrals) and thus be in agreement with one of Kolmogorov’s

fundamental hypotheses. For this reason, exact nontrivial solutions of wave tur-

bulence are called Kolmogorov–Zakharov spectra. There are several examples in

wave turbulence where there is an inverse cascade of wave action; in Chapter 9 we

present the case of gravitational wave turbulence (Galtier and Nazarenko, 2017).

It is less common to obtain an inverse cascade in the case of three-wave resonant

interactions. An example is given by rotating magnetohydrodynamic turbulence:

the energy cascades directly and the hybrid helicity (a modified magnetic helicity)

cascades inversely (Galtier, 2014).

To conclude this section, let us note that Robert Kraichnan and Vladimir

Zakharov received the Dirac medal in 2003 for their contributions to the the-

ory of turbulence, particularly the exact results and the predictions of inverse

15 Many other studies have been devoted to gravity wave turbulence. Chapter 4 discusses some of them.
16 The second exact solution corresponding to an inverse cascade of wave action for gravity waves was published

by Zaslavskii and Zakharov (1982).
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10 1 General Introduction

cascade, and for identifying classes of turbulence problems for which in-depth

understanding has been achieved.

1.1.5 Emergence of Direct Numerical Simulation

From the 1970s, a new method for analyzing turbulence emerged: direct numer-

ical simulation (Patterson and Orszag, 1971; Fox and Lilly, 1972). By direct, we

mean the simulation of the fluid equations themselves and not a model of these

equations. We have already cited as a model the EDQNM approximation used in

hydrodynamics (Orszag, 1970); there is also the case of magnetohydrodynamics

with the study of the inverse cascade of magnetic helicity (Pouquet et al., 1976).

There are other models such as nonlinear diffusion models (Leith, 1967) or shell

models (Biferale, 2003) – which we will briefly discuss in Chapter 3.

Since its beginnings, direct numerical simulation has made steady progress. It

currently represents a means of studying turbulence in great detail; it is also an

indispensable complement to experimental studies. It is impossible to summarize

in a few lines the numerous results obtained in the field of numerical simulation.

Let us simply point out that the regular increase in spatial resolution makes it pos-

sible to increase the Reynolds number and to describe increasingly fine structures

(see Figure 1.2). It is interesting to compare the current situation with the first

direct numerical simulations of incompressible three-dimensional hydrodynamic

turbulence. For example, Orszag and Patterson (1972) used a spatial resolution of

643 and, as explained by the authors, each time step then required a computation

time of 30 seconds! It is also interesting to note that the diffusion of knowledge

takes some time: for example, the first direct numerical simulation of incompress-

ible three-dimensional magnetohydrodynamic turbulence was realized by Pouquet

and Patterson (1978) with a spatial resolution of 323. Nowadays, a standard direct

numerical simulation of turbulence is generally performed with a pseudospectral

code, in a periodic box and with a spatial resolution of about 20483 – the high-

est to date being 16 3843 (Iyer et al., 2019). For more information on the subject,

the reader can consult the review article of Alexakis and Biferale (2018), where

numerous examples of direct numerical simulation are presented in the context of

various turbulence studies.

1.1.6 Turbulence Today

In the history of sciences on turbulence, the early 1970s were a turning point.

Very schematically, we can consider that the theory of turbulence was built

during the years 1922–1972, a period during which the main concepts were intro-

duced, allowing the first exact results to be obtained.17 The books of Monin and

17 The year 1922 can be used as a reference since it is this year that Richardson introduced the fundamental
concept of energy cascade.
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