

Index

A/B experimentation 21, 27	ethical, legal, and societal implications (ELSI)
abuse	element 62
copyright 78	implementation-oriented elements 61
definition and examples 145–146	purpose of 2, 61
motivations for 172	quality and care 259–260
music recommendation systems 67	requirements-oriented elements 61–62
reproducibility in scientific applications 170	in summary 72
resistance to 145–149	Analysis Rubric applications
traffic speed estimation 75	COVID-19 mortality rates 71–72
see also dependability	financial services 90–95
academia, place of data science within 268–270	healthcare records 69–71
see also transdisciplinarity of data science	medicine and public health 84–88
access control 135	music recommendation 66–68
accountability	protein folding 68–69
ethics 222–223	science-oriented 89–90
Health Insurance Portability and Accountability	social, political, and governmental 95–99
Act 128	speech recognition 64–66
action, bias for 185	spelling correction 62–64
ad brokers 201	transport and mapping 75–78
addition, bias for 185-186	web and entertainment 78–84
adversarial change 119	anchoring bias 180
adversarial data attacks 147-148	anomaly detection 149
advertising	anonymized data 103-104
balancing benefit across parties 191–193	see also privacy issues
confidentiality policies 134	anti-money-laundering 93
targeted or personalized 80-82	antibody tests 115–116
targeting subpopulations 116–117	app use patterns 222
via the Internet 35	Apple 141
advertising click fraud 146	applications see data science applications
alcohol-vehicle accidents study 165-166	artificial intelligence (AI)
algorithmic fairness 98, 101	data science as distinct from 20
algorithmic modeling culture 15, 26	definition 20, 42
algorithms	"from algorithms to data to needs" 271–273
definition 42	regulatory landscape 216
foundational fields of data science 19	terminology 27
using to solve problems 271–273	AT&T 132
AlphaFold2 software 54–55	attrition controls 162
American Statistical Association (ASA) 37–38	auditability 154–158
amino acids 54-55	authority, appeals to 183–184
Analysis Rubric	automated speech recognition (ASR) 49–51
applying 74–75, 266–267	automatic data, as term 27
challenges 109	automatic translation 208–209

306

automation	casualty insurance 93–94
impact on being human 202–203	causal relationships 8–9
of jobs 219, 233	definition 42
societal impacts 219	statistics 121
autonomous cars see self-driving cars	understandability 158–168
availability bias 172	variable selection 167–168
averages, setting objectives 191	visualization 17
averages, setting objectives 191	census data 136
Babbage, Charles 18	chain of trust 140
bagging 122–123	
base rate fallacy 180–181	child pornography 113, 141
,	city noise levels monitoring 190
baseline treatment 163	classifications
batch mode 19	definition 11
behavioral retargeting 201	machine learning 24
behavioral targeting 196	clear box 12
Belmont Principles	climate change 166, 235
acting ethically 222	clinical trials 130
application to data science 39–40	clustering
commission and Belmont Report 38-39	definition 12
principlist approach 100–105	machine learning 24
see also beneficence; justice; respect for persons	clustering illusion 183
beneficence	cognitive biases 172–173, 180–186
criminal sentencing and parole decision-	collaborative filtering 52–53
making 101	communicating data science results 171–186
definition 43	examples 173–174
mobility reporting 104	organizational ethics 225–226
news feed recommendations 102	role of information consumers 179–186
as principle 38, 39–40	role of journalists 177–179
underwriting and insurance 105	role of scientists 174–177
vaccine distribution optimization 103	COMPAS (Correctional Offender Management
bias	Profiling for Alternative Sanctions) 194–195
cognitive biases 172–173, 180–186	competitive development 235–236
criminal sentencing and parole decision-	computer engineering 20
making 98–99, 101–102	computer security 142–145
inductive bias 121–124	see also privacy issues
role of information consumers 180–186	computer vision (CV) 25
selection bias 115–116	computing
social biases 121, 193–196	in the curriculum 237–240
underwriting and insurance 105	definition 14
big data	as foundational field of data science 19-24
computing hardware 22	key terms 43
data quality 115–116	machine learning 24–26
definition 42	transdisciplinary research 255
"from algorithms to data to needs" 271–273	computing hardware 22, 124, 138
and machine learning 113–114	concept drift 118–120, 207
•	
scale 13	conclusions (defining data science)
terminology 27	data science as field 20
biometric identification 131, 132, 245	definition 42
Bitcoin 149	music recommendation systems 53–54
Boeing 737 Max crashes 150	types of 7, 11–12
boosting 123	confidence interval 207
bots 173	confidentiality 126–127, 134, 233
bottom-up approach 62	see also privacy issues
Breiman, Leo 15–16	confirmation bias 173, 175
	conflict of interest 221–222
Cambridge Analytica/Facebook scandal 141	confounding variables 159–160
cars see alcohol–vehicle accidents study; self-driving	conjunction fallacy 182
cars	consensus-building institutions 251–254

content regulation 212	"as coherent field" 265–266
contextual integrity 127	conclusions, types of 7, 11–12
continual optimization 19	definitions 7–8, 42
control group 161	foundational fields 2, 13–14
copyrighted material identification 78–79	see also computing; historical perspective;
corner cases 191	operations research; statistics
corner condition 76	"from algorithms to data to needs" 271–273
corpus data 48–49	future of 276–277
correlation 8–9, 42	insights 7, 8–11
see also causal relationships	models 7–8
counterfactual 158	opportunities and challenges 266
country-wide economic predictions 94–95	"post-modern Prometheus" 274–276
courses see data science courses	"rethinking responsibility and
COVID-19	success" 270–271
Analysis Rubric 71–72	scale 12–13
communicating results 225–226	terminology 27, 41–43
healthcare records 56	"where does data science fit in
location data 141–142	academia?" 268–270
predicting mortality 58–60	see also transdisciplinarity of data science
role of science 30–32	data science applications 1–4, 45–46
visualization 9–11	academic research areas 30–34
COVID-19 vaccinations	challenges 109, 275–276
communicating results 173–174	COVID-19 mortality rates 58–60, 71–72
media reporting 178–179	economic sector 30
vaccine efficacy 173–174	financial services 90–95
visualization 9–11	healthcare records 55–58, 69–71
criminal sentencing 98–99	legal challenges 214–216
fairness 194–195	medicine and public health 84–88
legal regulation 245	music recommendation 51–54, 66–68
principlist approach 101–102	protein folding 54–55, 68–69
crowdsourcing 56-57	science-oriented 89–90
cryptography 137–138	social, political, and governmental 95–99
curriculum, data science in 237–240	speech recognition 49–51, 64–66
see also education	spelling correction 48–49, 62–64
cybersecurity 142–145	teaching 240–241
CyberSecurity Bill of Rights 143	technical, contextual, and societal challenges 3
cyclic models 121–122	transport and mapping 75–78
	web and entertainment 78–84
dark patterns 222	see also Analysis Rubric; societal concerns
data analysis 27	data science courses
see also Analysis Rubric	demand for 22–24
data attacks 146–149	post-secondary 238–240
data deluge 234	primary and secondary curriculum 237–238
data generation and collection	data science skills 218–219
privacy issues 126, 128–131	data storage 114–115, 126
sources 111–112	data volume
data-intensive approaches 48–49	scale 12–13
data minimization 133	virtuous cycle 12
data modeling culture 15, 26	data wrangling 112
data poisoning 148	datasheets 114–115
data privacy see privacy issues	de-identification 134
data processing 112–114	de jure regulation 244–250
data provenance 115	see also legal issues in data science
data publication norms 253	deep fakes 146
data quality 115–117	deep learning 20, 26, 27
data retention 131–134	DeepMind, AlphaFold2 software 54–55
data science	democratizing data 140–142
AI as distinct from 20	demographic data 136

denominator neglect 173–174	transdisciplinary research 256
dependability 126	use of data science in improving
Analysis Rubric 61	education 240–241
autonomous cars 77	vocabulary/definitions 241–243
balancing corporate, individual, and government	efficiency see optimization
concerns 131–134	email spam detection 113
COVID-19 mortality rates 71	empirical computing 20–21, 22–24
genome-wide association studies (GWAS) 87	employment, automation of jobs 219, 233
healthcare records 70	enclave-enabled services 138
location data 139–140	encryption 135–136
music recommendation systems 66–67	homomorphic 138–139
and privacy 126–127	end-to-end 138
privacy regulation: unintended	energy usage data 134–135
consequences 140–142	engineering 33
privacy versus usage rights 128–131	ensemble models 122–123
protein folding 69	entertainment
resilience 149–153	application of data science 78–84
resistance to abuse 145–149	music industry 78, 257
security 142–145	music recommendation systems 51–54,
•	66–68
speech recognition 65 spelling correction 63	
· •	2 1
targeted advertising 81	environment
technologies for privacy 134–139	climate change data 166
designers 36 dictionary approach (spelling) 48	data science applications 235 nudging 198
5 11 (1 8)	
differential privacy 136	errors see failures, toleration of; uncertainty
disciplinary foundations of data science 2, 13–14	estrogen replacement therapy study 166
see also computing; operations research;	ethical, legal, and societal implications
statistics	(ELSI) 62, 212
discounts, anchoring bias 180	acting ethically 220–226
discrimination 193–196	COVID-19 mortality rates 72
see also fairness	economic impacts 216–220
discriminative models 24	genome-wide association studies (GWAS)
disease diagnosis 85	88
disease outbreaks 85	healthcare records 71
diseases, causes of 88	legal issues 212–216
disparate impact 193	music recommendation systems 68
disparate treatment 193	news feed recommendations 83
divisiveness 234	protein folding 69
DNA evidence example 181–182	speech recognition 65–66
double-blinding 162	spelling correction 64
dynamic programming 18	targeted advertising 81–82
4 1 1 2 00 00	traffic speed estimation 76
earthquake prediction 89–90	ethical principles 4
economic impacts (data science) 216–220, 233	acting ethically 220–226
economic sector	addressing societal concerns 260–261
algorithmic investment 92–93, 120	Belmont, application to data science
data generation and collection 112–113	39–40
data science applications 30	Belmont Commission 38–39
financial services 90–95	frameworks 37
economics, contribution to data science 36, 256	key terms 43
economies of scale 248–250	philosophers 35
education	professional ethics 37–38
data science applications 97	success criteria 267
data science courses 22–24	see also principlist approach
data science in the curriculum 237–240	ETL (Extract, Transform, and Load) 111
importance of 237	European Union
school testing results 175	Ethics Guidelines for Trustworthy AI 39

310

European Union (cont.) General Data Protection Regulation of 2016 (GDPR) 128-129, 133, 215 Right to Be Forgotten 215, 251 experiments causality 158-168 communicating results 171-186 design of 161-167 reproducibility 168-171 experts, trust in 183-184, 260-261 explainability 154-158 see also communicating data science results Cambridge Analytica scandal 141 influence of positive and negative posts user data 146 facial recognition 131, 245 failures, toleration of 206-207 Analysis Rubric 61-62 COVID-19 mortality rates 72 healthcare records liability 209-211 music recommendation systems 68 protein folding 69 risk 208-209 route finding 77 speech recognition 65 spelling correction 64 traffic speed estimation 76 uncertainty quantification 207-208 web search 83 fair selection of subjects 39-40 fairness criminal sentencing 98, 101 objectives 193-196 societal concerns 233 statistics 120-121 terminology 242 false positives 169, 180–181, 189 federated learning 136-137 filter bubbles 199-200 financial services data generation and collection 112-113

gambler's fallacy 182–183

firms, self-regulation 251

fractional factorial test 163

freedom of expression 234 full factorial test 163

game theory 35

framing bias 180 fraud detection 91

General Data Protection Regulation of 2016 (GDPR) 128–129, 133, 215 generalization (inductive bias) 121–124

data science applications 90-95

Index

generative models 24 genome-wide association studies (GWAS) 86-88, 167-168 geofence warrants 132 GitHub 131 Global Positioning System (GPS) 139-140, 141-142 global warming 166 Goodhart's Law 184 Google Bitcoin mining 149 data requests to 132 failure tolerance 83 healthcare records 131-132 mobility reporting 85, 103-104 personal data 129 privacy regulations 141 release of data logs 170-171 Google Flu Trends 133, 171 Google Research 34 Google Takeout 129 Google Translate 209 governance impacts of data science on 234 innovation in data science 235-236 large companies 250 government data requests 132 data science applications 95-99 dependability and privacy 131-134 legal challenges from 212-214 gradual change 119 graphs historical perspective 16 insights into COVID-19 data 9-11 see also information visualization Gray, Jim 32 greenhouse gas emissions 166 hardware 22, 124, 138 Health Insurance Portability and Accountability Act (HIPAA) 128 healthcare clinical trials 130 data science applications 84-88 Google Flu Trends 133, 171 hormone replacement therapy study 166 liability 210-211 medical records 55-58, 69-71, 131-132 pharmaceutical treatment effects 167-168 transdisciplinary research 256 vaccine distribution optimization 85, 103 heterogeneity of subjects 168

heterogeneous treatment effects 167-168

emergence of data science 27-28

foundational fields of data science 2

higher education see universities

historical perspective

graphs 16	data volume 13
legal precedents 212	online shopping 220
History Lab Project 34	value of web services 129–130
homomorphic encryption 138–139	interpretability 154–158
hormone replacement therapy study 166	see also communicating data science results
house prices 93–94	interventions 159
principlist approach 104–105	introspection, lack of 182
quantifying uncertainty 208	inverse uncertainty quantification 207
HTTPS (HyperText Transfer Protocol	investment, algorithmic approaches 92–93, 120
Secure) 135–136	
human–computer interaction (HCI) 21–22	journalism
humanities 34, 256	communicating data science results 177–179
humanity, impact of data science on being	data publication norms 253
human 202–203	novelty versus robustness in experiments 169
humility 153	role of journalists 36
	transdisciplinary research 256
IBM Research 111	judicial decisions <i>see</i> criminal sentencing
image classification 189	judicial interpretation 247–248
incentives 221–222	jurisdictional issues 214
individual protections 213	justice
see also privacy issues	criminal sentencing and parole decision-
inductive bias 121–124	making 101
inferences 14–15, 42	definition 43
information cascades 184	mobility reporting 104
information consumers, role in understanding	news feed recommendations 102
results 179–186	as principle 38–39, 40
information retrieval 21	underwriting and insurance 105
information visualization	vaccine distribution optimization 103
as field 16	vaccine distribution optimization 103
historical perspective 16	know-your-customer (KYC) compliance
insights into COVID-19 data 9–11	regulations 93
journalists' role 178	known-unknowns 151
in statistics 16–17	KIIOWII UIIKIIOWIIS 131
understandability 156	L_1 regularization 123
informed consent 39–40	Lake Woebegone effect 175
news feed recommendations 102	language use 175
vaccine distribution optimization 103	see also communicating data science results
innovation	law enforcement 247
competition between countries 235–236	lawyers 35
fostering 256–258	leadership skills 218
societal concerns 235–236	legal issues in data science 212–216, 244
use of data science in improving	Analysis Rubric 62
education 240–241	anti-money-laundering 93
insights 7, 8–11	balancing corporate, individual, and governmen
COVID-19 case study 9–11	privacy concerns 131–134
data science as field 20	de jure regulation 244–250
definition 42	explainability of results 157–158
visualization 17	financial services 91
institutional review boards (IRBs) 221–222, 223	General Data Protection Regulation of 2016
institutional scale 233	(GDPR) 128–129, 133, 215
instrumentation 111–112	other guiding forces 250–254
insurance 93–94, 104–105	privacy 128–131, 214–215
intellectual property (IP) 130–131	privacy: 126–131, 214–213 privacy: unintended consequences of
international governance 235–236	regulation 140–142
International governance 255–256 Internet	Right to Be Forgotten 215
advancing data science 35	underwriting 93–94
advertising 35	see also ethical, legal, and societal implications
data science applications 78–84	(ELSI)

Level-5 (fully autonomous) cars see self-driving cars	neural networks 22, 27
liability 157–158, 209–211	news feed recommendations 83, 102–103,
linear models 121–122, 123	196–198
linear programming 18	news reporting see journalism
location data 139–140, 141–142	newsvendor problem 18–19
	noise levels monitoring 190
machine learning 24–26	non-governmental institutions 251
and big data 113–114	non-stationarity 118-120, 207
definition 20, 42	non-parametric models 123–124
"from algorithms to data to needs" 271–273	normal distributions 123
internships and courses in 22–24	nudging 198
statistics as distinct from 26	numerical errors 207
terminology 27	NYU's SONYC (Sounds of New York City) 190
see also models	
maintenance needs 97	objective function 14, 43, 96
management skills 218	objectives
mapping, data science applications 75–78	Analysis Rubric 61–62
see also Global Positioning System (GPS); self-	autonomous cars 78
driving cars	balancing benefit across parties 191–193
mastery learning 97	challenges 203–205
McNamara's Fallacy 184, 190–191	clarity of 188–191
measurability 184, 190–191	concerns to the individual 196–203
media reporting see journalism	COVID-19 mortality rates 72
medical records 55–58, 69–71, 131–132	fairness 193–196
see also healthcare	healthcare records 70
meritocracy 218–219	how to set 187–188
metadata 114–115	music recommendation systems 67–68
military technology 245	protein folding 69
mobility reporting 85, 103–104	route finding 77
model stealing 148–149	speech recognition 65
models	spelling correction 64
building and deploying 118	targeted advertising 81–82
clear box or opaque box 12	traffic speed estimation 76
COVID-19 mortality rates 58–60	transparency 203
data modeling culture 15	objectivity 175
definition 42	see also communicating data science results
healthcare records 57–58	observational studies 165
inductive bias 121–124	online communities see usage communities
operations research 19	online mode 19
practical considerations 124–125	online shopping 220
theoretical limitations 118–121	opaque box 12
money laundering 93	operations research
Moore's Law 124	definition 14
multi-armed bandit experiment 163–164	as foundational field of data science 17–19
multi-party computation 137–138	key terms 43
multidisciplinarity see transdisciplinarity of data	large-scale problems 125
science	optimization 14, 17
multivariate testing 163	transdisciplinary research 255
music industry 78, 257	optimization definition 43
music recommendation systems 51–54, 66–68	
national googrity 212	economic benefits 216, 219–220
national security 212	in machine learning 120
national sovereignty 234 natural experiments 165	meaning of 11 operations research 14, 17
natural experiments 165 natural language processing (NLP) 25	operations research 14, 17 optimizer's curse 164
	ordering bias 182
nearest-neighbor models 121–122 Netflix 66, 134	organizational ethics
neural network models 26	
neural network models 20	example challenges 225–226

governance 222–223	criminal sentencing and parole decision-
incentives 221–222	making 101–102
principled decision-making 261	mobility reporting 103–104
from principles to policies 221–222	news feed recommendations 102–103
outcome measures (design of experiments) 161	organizational ethics 223–225, 261
overfitting 122	role of data scientists 260–261
Ç	underwriting and insurance 104–105
<i>p</i> -values 176–177	vaccine distribution optimization 103
pair-matching 162	privacy issues
parametric models 123	balancing corporate, individual, and government
Pareto frontier 190	concerns 131–134
parole decision-making 98–99	data generation and collection 113
fairness 194–195	differential privacy 136
legal regulation 245	explainability of results 157
principlist approach 101–102	healthcare records 57–58, 59
passwords 143	legal regulation 128–131, 214–215,
pattern detection 183	245–246
periodic change 119	location data 139–140
personal data 126–127	mobility reporting 85, 103–104
see also privacy issues	personalized advertising 201
personal implications to data 233–234	reproducibility 170–171
see also societal concerns	statistics 120–121
personalization	technologies for 134-139
in advertising 80–82, 116–117, 196–199,	terminology 242
201	traffic speed estimation 75
filter bubbles 199–200	unintended consequences of privacy
news feed recommendations 83, 102–103,	regulation 140–142
196–198	versus usage rights 128–131
organizational ethics 225–226	user-generated data 117
privacy issues 201	Private Aggregation of Teacher Ensembles
pros and cons 196–199	(PATE) 148
reading tutors 97	professional ethics 37–38
video games 79, 198	see also ethical principles
personally identifiable information (PII) 128	Prometheus (Greek mythology) 274–276
pharmaceutical treatment effects 167–168	property prices see house prices
philosophy, contribution to data science 35, 256	prosecutor's fallacy 181–182
polarization 199-200	protein folding 54–55, 68–69
political polling 174	provenance (metadata) 115
political scientists 35	psychologists 36
politicians 35	public health 84–88
politics	see also COVID-19; healthcare
criminal sentencing and parole decision-	
making 98–99, 101–102, 194–195	quality in data science 115–117, 259–260
filter bubbles 199–200	quant trading 92–93
news feed recommendations 83, 102–103,	quasi-experiments 165
196–198	
targeting in political campaigns 96–97	race
Twitter bots 173	census data 136
polynomial models 121–122	fairness 194–195
post-modern Prometheus 274–276	randomized controlled trial (RCT) 161-167
post-secondary education 238–240	randomness 207
pre-screen 167	reading tutors 97
precision 189	recall 189
prediction, meaning of 11	recency bias 172–173
pricing of property see house prices	recommendations
primary education 237–238	filter bubbles 199–200
principle of least privilege 135	meaning of 11
principlist approach 100–105	news feed 83, 102–103, 196–198

314

recommendations (cont.) videos 83 see also personalization record keeping 215 recruitment (design of experiments) 161-162 regime change 119 regression insights into COVID-19 data 9-11 machine learning 24 regression discontinuity analysis 165 regularization 122, 123 regulation see legal issues in data science reinforcement learning 24, 53 reliability 208-209 replication crisis 169 representativeness 182 reproducibility Analysis Rubric 61-62 in scientific applications 168-171 reputational risk 208 research and development (R&D) competition between countries 235-236 focused and transdisciplinary research 255-256 fostering innovation 256-258 resilience 149-153 see also dependability resource allocation problem 18 respect for persons criminal sentencing and parole decisionmaking 101 definition 43 mobility reporting 104 news feed recommendations as principle 38, 39-40 underwriting and insurance 104 vaccine distribution optimization 103 response time 190 responsibilities, as data scientists 270-271 restriction (design of experiments) 162 retail, impact of optimization 220 retention controls 162 reversion 163 Right to Be Forgotten 215, 251 risk autonomous cars 77 COVID-19 mortality rates 72 healthcare records 71 terminology 242 toleration of failures 208-209 underwriting and insurance 93-94, 104-105 robotics automation of jobs 219, 233 impact on being human 202-203

Index

robustness 152 route finding 76-77 sampling 115-116 sampling change 119–120 scale 12-13 challenges due to 125 cons to 249-250 data storage 114-115 economic benefits 216-218 economies of scale 248–250 healthcare records 55–58 legal precedents 212 machine learning 113-114 Moore's Law 124 research preferences 169 scarcity 192 sciences 30-32 data science applications 89-90 protein folding 54-55 transdisciplinary research 256 scientific experiments see experiments scientists, communicating data science results 174-177 search engines bias 172-173 clarity of objectives 189 as data science application 82-83 optimization 120 secondary education 237-238 secure aggregation 137 secure enclaves 138 secure multi-party computation 137-138 security 142-145, 234 see also national security; privacy issues selection bias 115-116 self-critical approach 260 self-driving cars clarity of objectives 188 as data science application 77-78 legal regulation 245 liability 157-158, 209-210 self-regulation 251 sensitive personally identifiable information (SPII) 128 sentencing decisions (criminal justice) 98-99 fairness 194-195 principlist approach 101-102 shopping, use of the Internet 220 Sinclair, John 14 single-subject experiment 164-165 skills, for data science 218-219 Sloan Digital Sky Survey (SDSS) 89 small data 13 social bias 121, 193-196 social issues Analysis Rubric 62

machine learning 26

societal impacts 219

data science applications	speech recognition 65
95–99	spelling correction 63
legal protections 213	traffic speed estimation 75
see also ethical, legal, and societal implications	technical concerns 274–275
(ELSI)	technological change
social sciences 32–33	economic benefits 216, 218–219
societal concerns 3-4, 229-232	economies of scale 248–250
recommendations and approaches 235–236,	legal regulation 244-246, 247-248
267–268	"post-modern Prometheus" 274–276
summary of issues 232–235	for privacy 134–139
sociologists 36	see also innovation
software engineering 19	terms-of-service, liability 209-211
software engineering skills 218	theoretical computer science 19
spam filtering 119, 189	third-party data 112
speech recognition 49–51	TLS (Transport Layer Security) 135–136
Analysis Rubric 64–66	top-down approach 62
federated learning 136–137	TOR Project 141
mistakes in 118–121	tractable data 61, 111
spelling correction 48–49, 62–64	appropriate use of user-generated data 117
SSL (Secure Sockets Layer) 135–136	COVID-19 mortality rates 71
stationary models 118–120	data generation and collection 111-112
statistics	data quality 115–117
causal relationships 121	data storage 114–115
in the curriculum 237–240	healthcare records 70
definition 13	music recommendation systems 66
as foundational field of data science 14-16	processing data 112–114
key terms 42	protein folding 68
machine learning as distinct from 26	speech recognition 64
privacy and fairness 120–121	spelling correction 63
scientists' role in communicating	traffic speed estimation 75–76
results 174–177	transdisciplinarity of data science 29
terminology 242	advancing data science 35
transdisciplinary research 255	building coalitions 35–36
visualization 16-17	new application areas 30-34
stochastic optimization 53	research and development (R&D) 255-256
stock market investment selection 92–93	transformation, meaning of 12
stopping criteria 162	transistors 22, 124
storytelling, explaining results 156–157	translation systems 208–209
structural causal model 159	transparency, in objectives 203
sudden change 119	transport, data science applications 75–78
sufficient power 161	see also self-driving cars
sunk cost fallacy 183	traveling salesperson problem (TSP) 18, 125
superstar effects 219	treatment group 161
supervised learning 24	trust
survivorship bias 184–185	chain of trust 140
synthetic control method 165	data science applications 235
	Ethics Guidelines for Trustworthy AI
Tacoma Narrows Bridge disaster 151	39
Target 134	for journalists 177–179
targeted advertising 80-82, 116-117	reproducibility of results 170–171
teaching, use of data science in 240-241	for scientists 174–177
see also education	secure multi-party computation 137-138
technical approach	transparency 203
Analysis Rubric 61	understandability 154-158
COVID-19 mortality rates 71	truth 191, 260
healthcare records 70	Tukey, John 9, 27–28
music recommendation systems 66	Turing, Alan 27
protein folding 69	Twitter bots 173

Cambridge University Press & Assessment 978-1-009-27220-9 — Data Science in Context Alfred Z. Spector, Peter Norvig, Chris Wiggins, Jeannette M. Wing More Information

316

uncertainty 118-121 quantification of 207-208 resilience 151 terminology 242 toleration of failures 206–207 underfitting 123 understandability 154 Analysis Rubric 61–62 causality 158-168 communicating data science results 171-186 COVID-19 mortality rates 72 healthcare records interpretability, explainability, and auditability 154-158 music recommendation systems 67 protein folding 69 reproducibility in scientific applications 168-171 speech recognition 65 spelling correction 63–64 underwriting 93-94, 104-105 universe, temperature of 89 universities data science courses 238-240 transdisciplinary research 256 unknown-unknowns 151 unsupervised learning 24 usage communities 231

Index

usage rights, versus privacy 128-131 user-generated data 117 users, data generation 112 utilities, energy usage data 134-135 V-Safe system 56-57 vaccine distribution optimization 85, 103 see also COVID-19 vaccinations validation 152 value, of web services 129-130 variable selection (causal relationships) 167-168 variance 122 verification 152 video game personalization 79, 198 video recommendations 83 virtuous cycle phenomena 248-250 visualization see information visualization vocabulary, clarity in 241-243 walled gardens (personal information) 201 warfare 245 weather prediction 89-90 web search see search engines wicked problems 277 World Wide Web see Internet Zillow 208