

Interpreting Quantum Mechanics

This novel text directly addresses common claims and misconceptions around quantum mechanics and presents a fresh and modern understanding of this fundamental and essential physical theory. It begins with a non-mathematical introduction to some of the more controversial topics in the foundations of quantum mechanics. For those more familiar with the theoretical framework of quantum mechanics, the text moves on to a general introduction to quantum field theory, followed by a detailed discussion of cutting-edge topics in this area such as decoherence and spontaneous coherence. Several important philosophical problems in quantum mechanics are considered, and their interpretations are compared, notably the Copenhagen and many-worlds interpretations. The inclusion of frequent real-world examples, such as superconductors and superfluids, ensures the book remains grounded in modern research. This book will be a valuable resource for students and researchers in both physics and the philosophy of science interested in the foundations of quantum mechanics.

David W. Snoke is a Distinguished Professor of Physics at the University of Pittsburgh and leads a laboratory studying fundamental optical effects. In 2006 he was elected a Fellow of the American Physical Society "for his pioneering work on the experimental and theoretical understanding of dynamical optical processes." He has published over 180 articles in science and philosophy journals, and five books, including *Solid State Physics* (2nd edition published by Cambridge University Press, 2020), *Universal Themes of Bose–Einstein Condensation* (Cambridge University Press, 2017), and the well-known "green book," *Bose–Einstein Condensation* (Cambridge University Press, 1996).

Interpreting Quantum Mechanics

Modern Foundations

David W. Snoke

University of Pittsburgh

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,
New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781009261555

DOI: 10.1017/9781009261562

© David W. Snoke 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2024

A catalogue record for this publication is available from the British Library

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-009-26155-5 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> Oh, the depth of the riches and wisdom and knowledge of God! How unsearchable are his judgments and how inscrutable his ways! —Romans 11:33

Contents

Pi	eface		page xii			
	Part I	A Nonmathematical Exposition of Quantum Mechanics and Quantum Field Theory	1			
1	It's All Fields and Waves					
	1.1	1.1 Fields				
	1.2	Waves	9			
	1.3	Basic Wave Effects	11			
	1.4	The Return of the Ether	16			
2	How Fields Generate Particles		18			
	2.1	Field Resonances	18			
	2.2	Two Types of Quantization	20			
	2.3	Resonances as Particles	23			
	2.4	Bosons and Fermions	25			
	2.5	A Wave Can Be a Very Solid Thing	27			
	2.6	And a Solid Can Be a Very Wavy Thing	28			
	2.7	Dirac's Beautiful Theory	30			
	2.8	Are Particles Real?	32			
3	Jumpy Detectors		35			
	3.1	3.1 Atoms and Natural Length Scales				
	3.2	Electron Jumps	37			
	3.3	The Photoelectric Effect	42			
	3.4	Avalanche Detectors, Measurement, and Randomness	43			
	3.5	The Uncertainty Principle	45			
4	Nonlocality		48			
	4.1	Correlation Experiments	48			
	4.2	Why Physicists Want to Preserve Relativity	51			
	4.3	One Explanation That Won't Work: The Local Hidden-Variables				
		Hypothesis	52			

vii

viii

Cambridge University Press & Assessment 978-1-009-26155-5 — Interpreting Quantum Mechanics David W. Snoke Frontmatter More Information

. —		Contents			
	4.4	The Copenhagen Interpretation	55		
	4.5	Are Fields Real?	58		
5	Alternative Interpretations of Quantum Mechanics				
	5.1 The Many-Worlds Hypothesis		62		
	5.2	Bohmian Pilot Waves	67		
	5.3	Variants of Positivism	69		
	5.4	Spontaneous Collapse	71		
6	Decoherence and Collapse				
	6.1	•			
	6.2	Decoherence	75 73		
	6.3	Environmentally Induced Selection	80		
	6.4	Quantum Trajectories and Spontaneous Collapse	82		
	6.5	Quantifying Spontaneous Collapse	85		
	6.6	Living with Nonlocality	88		
7	Quantum Mechanics and Our View of Reality				
	7.1	The Tao of Copenhagen	93		
	7.2	Free Will and Quantum Mechanics	98		
	7.3	Can Quantum Fluctuations Create Something from Nothing?	101		
	7.4	Spontaneous Symmetry Breaking	104		
	7.5	Did We Create Ourselves?	108		
8	Quantum Mechanics and Technology				
	8.1	Quantum Mechanics in Your Pocket: Computer Chips and			
		Nanotechnology	111		
	8.2	Tunneling, Radioactivity, and Quantum Biology	115		
	8.3	Quantum Cryptography	117		
	8.4	Quantum Information Processing	120		
	8.5	Lasers, Superfluids, and Superconductors	123		
	Key P	oints	128		
		Part II Basic Results of Quantum Mechanics	131		
9	Schrödinger Equation Calculations				
	9.1	Wave Equations	133		
	9.2	Quantum Confinement Energy: Why Nanometers are Important	136		
	9.3	Fermi Pressure in Solids: Why are Solids Solid?	137		
	9.4	Vibration of Atoms: The Simple Harmonic Oscillator Model	139		
	9.5	Unit Analysis of Atomic States	141		
	9.6	Universal Conductance in Quantum Wires	144		

ix Contents

10	Compar	ing Classical	and Quantum Systems	147
	10.1	-	on of the Planck Spectrum	147
		10.1.1	Planck's Derivation in Terms of Particle Statistics	148
		10.1.2	Derivation Using Quantum Field Theory	149
	10.2	Classical	l Chaos Theory	150
	10.3	Quantun	n and Classical Entanglement	152
		Part II	II A Short Course in Quantum Field Theory	155
11	Preliminary Mathematics			157
	11.1	.1 Dirac Wave Notation		
	11.2	General Properties of Operators		
	11.3	Operator	rs and Measurements	163
	11.4	The Schi	rödinger Equation	165
	11.5	The Unc	ertainty Principle	167
		11.5.1	Fourier Analysis	167
		11.5.2	Derivation of the Uncertainty Relationship	170
12	Boson C	uantization		173
	12.1	The Harr	monic Oscillator	173
		12.1.1	Derivation of Harmonic Oscillator States	173
		12.1.2	Basic Rules for Particle Operators	175
	12.2 Phonon Quantization		176	
		12.2.1	Derivation of Phonon Properties	176
		12.2.2	Basic Rules for Phonons	179
		12.2.3	Spatial Field Operators	180
	12.3	The Thermodynamic Limit in Quantum Field Theory		183
	12.4	Photon Quantization		185
		12.4.1	Derivation of Photon Properties	185
		12.4.2	Basic Rules for Photons	187
	12.5	Coheren	t States of Bosons	188
		12.5.1	Time Dependence of a Coherent State	188
		12.5.2	Number-Phase Uncertainty and Coherent States	190
13	Fermion Quantization			192
	13.1	Fermion	Field Operators	192
		13.1.1	Quantum Field Hamiltonians	192
		13.1.2	Visualizing the Fermion Field	193
		13.1.3	Fermion Spatial Field Operators	196
	13.2	3.2 The Dirac Fermion Field		197
		13.2.1	Derivation of the Dirac Equation	197
		13.2.2	The Dirac Equation and Spin	199

Contents

14	Transition Rules 20				
	14.1 Fermi's Golden Rule		Golden Rule	201	
		14.1.1	Derivation of Fermi's Golden Rule	201	
		14.1.2	Fermi's Golden Rule and Quantum Statistics	204	
	14.2	Interacti	ion Terms	205	
		14.2.1	Electron–Phonon Interactions	205	
		14.2.2	Electron–Photon Interactions	207	
		14.2.3	Other Interactions	209	
	14.3 Optical Transitions		Transitions	210	
		14.3.1	Derivation of the Bloch Equations for a Two-Level System	210	
		14.3.2	The Bloch Vector Representation	212	
	14.4	Single-F	Photon Transitions and Fermi's Golden Rule	214	
	14.5	Nonline	ar Optics and Nonunitarity	216	
	_				
15	•	n Diagrams		219	
	15.1	-	pansion of the S-Matrix	219	
		15.1.1	Justification of Wick's Theorem	221	
		15.1.2		222	
		15.1.3	Example: S-Matrix for a Boson-Mediated Interaction	223	
	15.2	-	n Rules for Feynman Theory	226	
	15.3		Interpret Feynman Diagrams	229	
		15.3.1	Example: Vacuum Energy	229	
		15.3.2	Example: Self-Energy	230	
		15.3.3	Example: Nonlinear Optics in Vacuum	232	
	Part IV	Mathemati	ical Considerations of Philosophy of Quantum Mechanics	235	
16			• •		
16	Matne n		derations of Quantum Interpretations	237	
	10.1	16.1.1	al Hidden-Variables Hypothesis Quantum Wave States of the EPR Experiment	237	
			1	237 240	
	16.1.2 Bell's Inequality 16.2 The Many-Worlds Hypothesis		÷ •	240	
	10.2		The Spectral Weight Problem	242	
		16.2.1	The Many-Worlds Hypothesis and Nonlocality	245	
		16.2.2	Many-Worlds and Spontaneous Symmetry Breaking	247	
	16.3		n Hydrodynamics	248	
	10.5	16.3.1	Derivation of the Bohmian Flow Equations	249	
		16.3.1	Comparison of Quantum Field Theory and Bohmian	249	
		10.3.2	Particles in a Standing Wave	250	
	16.4	The Trai	nsactional Interpretation	251	
	10.7	16.4.1	Are There Advanced Waves in Quantum Field Theory?	251	
		16.4.1	Is There Nonunitarity in Quantum Field Theory?	253	
		10.7.2	15 1 11010 1 1011 dillicuitty in Qualitain 1 loid 1 11001 y;	200	

xi Contents

17	Entand	alement in a C	Classical System	255		
.,	17.1		ical System with Second Quantization	255		
	17.2	-	ed States of a Resonator	259		
	17.3	_	quality for the Classical Resonator	260		
	Part V	Decoheren	nce, Spontaneous Coherence, and Spontaneous Collapse	265		
18	Irreversibility in Unitary Quantum Field Theory					
	18.1	The Poir	ncaré Recurrence Theorem	267		
	18.2	The Quantum Boltzmann Equation				
		18.2.1	Derivation of the Quantum Boltzmann Equation for a Many-Particle System	269		
		18.2.2	Quantum Boltzmann Equation for an Interacting Gas	272		
	18.3		nental Verification of the Quantum Boltzmann Equation	273		
	18.4	-	f the Quantum H-Theorem	275		
19	Decoherence in Quantum Field Theory			278		
	19.1	•				
	19.2	Correlation Functions in Quantum Field Theory				
	19.3	Time-Evolution Equations for Correlation Functions				
		of a Many-Particle System				
	19.4	Quantum Trajectories				
		19.4.1	Derivation of the Time-Evolution Equations for the			
			Density Matrix	285		
		19.4.2	The Quantum Trajectories Recipe	290		
20	Proposed Model for Spontaneous Collapse of Fermion States			292		
	20.1					
	20.2	Action on Superposition States				
	20.3	Implementation in Quantum Field Theory				
	20.4	Comparison to Weak Measurement Theory				
	20.5	Relativistic Considerations				
21	Spontaneous Coherence: Lasers, Superfluids, and Superconductors					
	21.1	Spontaneous Coherence				
	21.2	Why Phase Coherence Leads to "Super" Behavior				
	21.3	Superconductors and Superfluids are the Same Thing				
	21.4	Lasers Also Involve Spontaneous Symmetry Breaking				
App	endix A	Summary of	f quantum interpretations	317		
Index		•	•	321		

Preface

The overall premise of this book is that, while quantum mechanics is strange in some ways, it is far less strange than you probably think. Most of the intuition you need to understand quantum mechanics can be drawn from your intuition about water waves.

Much of this book is aimed at bringing the discussion of quantum mechanics up to the present day in regard to what quantum physicists know. This will include a fair amount of "debunking" of claims made in the past about quantum mechanics that even many physicists today assume are true. For example, the Planck radiation spectrum and the photoelectric effect have nothing to do with proving that particles exist as localized little objects, as we will see. This book will also include critiques of some widely held interpretations of quantum mechanics.

When the modern understanding is taken into account, much of the strangeness of quantum mechanics disappears, but not all of it. There are some truly strange results, and most of these involve *nonlocality*, the apparent effect that things in one place can affect things far away without any signal (that we know of) traveling from one place to the other. There are also open questions, such as whether the randomness we see is the result of tiny, but real, fluctuations not presently accounted for by the equations of quantum mechanics.

This book can be read at several levels. Part I requires no mathematical knowledge, and gives the overall perspective of this book. I strongly encourage advanced readers not to skip this part, because it includes many new perspectives on what we think we know about quantum mechanics. Part II requires only introductory college math, and works out some basic examples relevant to Part I.

A major contention of this book is that the proper way to start thinking about all philosophy of quantum mechanics is with quantum field theory. But many philosophers and even many physicists never study quantum field theory, because it is assumed to be a very high-level theory understandable only to a few experts. Part III of this book gives an introduction to all of the essential elements of quantum field theory needed to think about the philosophy properly. This section starts at the beginning but will be most suited for people who have already taken at least one upper-level course on quantum mechanics.

While most of the philosophy of quantum mechanics can be discussed without math, there are some arguments that require math. Part IV is a supplement to Part I that gives specific mathematical arguments relevant to the philosophical interpretations under debate.

Finally, Part V presents advanced theory of decoherence, to which I and my coworkers have made original contributions in the literature. This material is appropriate for students who have taken graduate quantum mechanics and quantum field theory or quantum optics classes. Some of the results, however, are accessible to people with less training, if they are willing to skip over the proofs.

xiii Preface

I have talked with too many people over the years about quantum philosophy to properly thank them all. Particular discussions that come to mind are those with Harvey Brown, Časlav Brukner, Erica Carlson, Andrew Daley, Steve Girvin, Bob Griffiths, Richard Jones, Andrew Jordan, Ruth Kastner, Tony Leggett, Roger Mong, John Norton, John Sipe, Fernando Sols, David Wallace, Peter Zoller, and Wojciech Zurek. I also thank all of the graduate students at the University of Pittsburgh who endured the philosophical tangents in my classes, and my wife Sandra for her constant support.

Soli Deo Gloria