Analytic Projective Geometry

Projective geometry is the geometry of vision, and this book introduces students to this beautiful subject from an analytic perspective, emphasising its close relationship with linear algebra and the central role of symmetry. Starting with elementary and familiar geometry over real numbers, readers will soon build upon that knowledge via geometric pathways and journey on to deep and interesting corners of the subject. Through a projective approach to geometry, readers will discover connections between seemingly distant (and ancient) results in Euclidean geometry. In mixing results from the past 100 years with the history of the field, this text is one of the most comprehensive surveys of the subject and an invaluable reference for undergraduate and beginning graduate students learning classic geometry, as well as young researchers in computer graphics. Students will also appreciate the worked examples and diagrams throughout.

John Bamberg is Associate Professor of Mathematics at the University of Western Australia, where he previously obtained his PhD under the auspices of Cheryl Praeger and Tim Penttila. His research interests include finite and projective geometry, group theory, and algebraic combinatorics. He was a Marie Skłodowska-Curie fellow at Ghent University from 2006 to 2009 and a future fellow at the Australian Research Council from 2012 to 2016.

Tim Penttila is an Australian mathematician whose research interests include geometry, group theory, and combinatorics. He was an academic at the University of Western Australia for 20 years and a professor at Colorado State University for 10 years.
“This book provides a lively and lovely perspective on real projective spaces, combining art, history, groups, and elegant proofs.”

– William M. Kantor

“This book is a celebration of the projective viewpoint of geometry. It gradually introduces the reader to the subject, and the arguments are presented in a way that highlights the power of projective thinking in geometry. The reader surprisingly discovers not only that Euclidean and related theorems can be realised as derivatives of projective results, but there are also unnoticed connections between results from ancient times. The treatise also contains a large number of exercises and is dotted with worked examples, which help the reader to appreciate and deeply understand the arguments they refer to. In my opinion this is a book that will definitely change the way we look at the Euclidean and projective analytic geometry.”

– Alessandro Siciliano, Università degli Studi della Basilicata
Analytic Projective Geometry

John Bamberg
University of Western Australia

Tim Penttila
University of Adelaide
Contents

Preface
 page xi

Part I The Real Projective Plane

1 Fundamental Aspects of the Real Projective Plane 3
 1.1 Parallelism 3
 1.2 Perpendicularity 3
 1.3 Duality 6
 1.4 Two Models of the Real Projective Plane 6
 1.5 Recap: The Real Projective Plane as Involving Points and Lines 10
 Exercises 11

2 Collineations 12
 2.1 The Projective General Linear Group 12
 2.2 The Fundamental Quadrangle 15
 2.3 The Fundamental Theorem of Projective Geometry 17
 2.4 Interlude: Homogenisation of Polynomials 26
 Exercises 28

3 Polarities and Conics 31
 3.1 Dualities and Polarities 32
 3.2 Conics 34
 Exercises 40

4 Cross-Ratio 43
 4.1 Introduction to Cross-Ratio 43
 4.2 Perspectivities 47
 4.3 Cross-Ratio of Lines 56
 4.4 Interlude: From Affine Ratio to Cross-Ratio 58
Contents

4.5 Harmonic Quadruples 64
4.6 Interlude: Some Invariant Theory 73
4.7 Some Applications of Cross-Ratio 76
Exercises 80

5 The Group of the Conic 83
5.1 The Projective Line and the Conic 83
5.2 Frégier Involutions 86
5.3 Pencils of Conics 90
5.4 Cross-Ratio on a Conic 93
Exercises 98

6 Involution 100
6.1 Basics on Involutions 101
6.2 Imaginary Points 102
6.3 The Involution Theorems of Pappus and Desargues 107
6.4 Pascal’s Theorem 119
6.5 The Chasles–Steiner Theorem 137
6.6 Quadrangular Sets 156
Exercises 159

7 Real Affine Plane Geometry from a Projective Perspective 163
7.1 Affinities 165
7.2 Parallel Projection 168
7.3 The Theorems of Ceva and Menelaus 170
7.4 Affine Conics: Ellipse, Hyperbola, Parabola 174
Exercises 182

8 Euclidean Plane Geometry from a Projective Perspective 184
8.1 Perpendicularity of Lines and Triangle Theorems 184
8.2 Circular Points and Euclidean Conics 197
8.3 Axes, Diameters, Foci 220
Exercises 236

9 Transformation Geometry: Klein’s Point of View 241
9.1 A Tower of Groups 242
9.2 Cayley–Klein Geometries 243
9.3 Descending the Klein Tower 245

10 The Power of Projective Thinking 246
10.1 Euclidean and Affine Connections 246
10.2 Advanced Theory Using Involutions 256
Exercises 286
#Contents

11 From Perspective to Projective

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Prologue</td>
<td>288</td>
</tr>
<tr>
<td>11.2</td>
<td>Naturalism in Art</td>
<td>289</td>
</tr>
<tr>
<td>11.3</td>
<td>Brunelleschi</td>
<td>293</td>
</tr>
<tr>
<td>11.4</td>
<td>Optics</td>
<td>295</td>
</tr>
<tr>
<td>11.5</td>
<td>Mirrors</td>
<td>298</td>
</tr>
<tr>
<td>11.6</td>
<td>Camera Obscura</td>
<td>299</td>
</tr>
<tr>
<td>11.7</td>
<td>Leon Battista Alberti</td>
<td>301</td>
</tr>
<tr>
<td>11.8</td>
<td>The Mathematics of Perspective</td>
<td>302</td>
</tr>
<tr>
<td>11.9</td>
<td>Guidobaldo Del Monte</td>
<td>304</td>
</tr>
<tr>
<td>11.10</td>
<td>The Infinity of Space</td>
<td>305</td>
</tr>
<tr>
<td>11.11</td>
<td>Does the Infinity of Space Follow from the Use of Perspective Methods?</td>
<td>306</td>
</tr>
<tr>
<td>11.12</td>
<td>Points at Infinity</td>
<td>308</td>
</tr>
<tr>
<td>11.13</td>
<td>Line at Infinity</td>
<td>311</td>
</tr>
<tr>
<td>11.14</td>
<td>Geometry as the Study of Space</td>
<td>313</td>
</tr>
<tr>
<td>11.15</td>
<td>Epilogue</td>
<td>314</td>
</tr>
</tbody>
</table>

12 Remarks on the History of Projective Geometry

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>

Part II Real Projective 3-Space

13 Fundamental Aspects of Real Projective Space

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>The Complex Projective Plane</td>
<td>332</td>
</tr>
<tr>
<td>13.2</td>
<td>The Absolute Conic</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>337</td>
</tr>
</tbody>
</table>

14 Triangles and Tetrahedra

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Triangles</td>
<td>338</td>
</tr>
<tr>
<td>14.2</td>
<td>Tetrahedra</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>347</td>
</tr>
</tbody>
</table>

15 Reguli and Quadrics

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Regulí</td>
<td>348</td>
</tr>
<tr>
<td>15.2</td>
<td>Quadrics and Polarities</td>
<td>352</td>
</tr>
<tr>
<td>15.3</td>
<td>Eight Associated Points</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>366</td>
</tr>
</tbody>
</table>

16 Line Geometry

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Linear Independence of Lines and Plücker Coordinates</td>
<td>368</td>
</tr>
<tr>
<td>16.2</td>
<td>Linear Congruences</td>
<td>375</td>
</tr>
<tr>
<td>16.3</td>
<td>Linear Complexes</td>
<td>376</td>
</tr>
</tbody>
</table>
Contents

16.4 Twisted Cubics 378
Exercises 386

17 Projections 388
17.1 Central Projections 388
17.2 Singular Projections and Singular Polarities 391
17.3 Computer Vision 393
Exercises 396

18 A Glance at Inversive Geometry 397
18.1 The Real Inversive Plane 397
18.2 Lester’s Theorem 402
Exercises 403

Part III Higher Dimensions 407
19 Generalising to Higher Dimensions 407
19.1 The Basic Properties of Higher-Dimensional Space 407
19.2 Quadrics and Polarities 410
19.3 Associated Secunda and Lines 412
Exercises 420

20 The Klein Quadric and the Veronese Surface 421
20.1 The Klein Correspondence 421
20.2 Rational Normal Curves 428
20.3 The Veronese Surface 429
Exercises 433

Appendix: Group Actions 434
References 436
Index 457
Preface

Projective geometry is the geometry of vision. Yet Arthur Cayley saw that it is *all* geometry. The mathematical historian Morris Kline called it the ‘science born of art’, and the very early history of its development from that origin is documented in the book *The Geometry of an Art* by the later mathematical historian Kirsti Andersen. Some of those developments (and some later ones) appear in Chapters 11 and 12, and what Cayley meant is explained in Chapters 7 through 10. Felix Klein also advocated for the centrality of projective geometry, but is better known for bringing out the central role of symmetry in geometry in his *Erlangen Programme*. Our treatment of most of the topics in this book emphasises this central role of symmetry, through the prominent place we assign groups, and we also explain Klein’s view on transformation geometry in Chapter 9. Moreover, this whole subject has a close relationship with linear algebra, and this underpins our treatment. What Jürgen Richter-Gebert calls ‘the beauty that lies in the rich interplay of geometric structures and their algebraic counterparts’ is a recurring theme of our book. Finally, we try to illustrate some of the advantages gained by taking a projective approach to geometry in Chapter 10, where we obtain connections between seemingly distant (and ancient) results in Euclidean geometry via the perspective hard-won in the earlier chapters.

This book is an introduction to projective geometry, and our coordinates are mostly over the real numbers. However, there is advanced and novel material for the practician. Chapter 6 examines one of the leitmotifs of this book – *involutions* and their role in projective geometry. This is taken much further in Section 10.2, where we begin with an old result of Pappus, and explore the more modern theorems of Ferrers, Ježábek, Lehmer & Daus, Gardner & Gale, Robson & Strange, and their astounding synergy.
Preface

We find that an approach that teaches the subject conceptually while also sketching its development resonates with us as teachers and authors, and also hope that it will find sympathetic vibrations in students and readers.