

Analytic Projective Geometry

Projective geometry is the geometry of vision, and this book introduces students to this beautiful subject from an analytic perspective, emphasising its close relationship with linear algebra and the central role of symmetry. Starting with elementary and familiar geometry over real numbers, readers will soon build upon that knowledge via geometric pathways and journey on to deep and interesting corners of the subject. Through a projective approach to geometry, readers will discover connections between seemingly distant (and ancient) results in Euclidean geometry. In mixing results from the past 100 years with the history of the field, this text is one of the most comprehensive surveys of the subject and an invaluable reference for undergraduate and beginning graduate students learning classic geometry, as well as young researchers in computer graphics. Students will also appreciate the worked examples and diagrams throughout.

JOHN BAMBERG is Associate Professor of Mathematics at the University of Western Australia, where he previously obtained his PhD under the auspices of Cheryl Praeger and Tim Penttila. His research interests include finite and projective geometry, group theory, and algebraic combinatorics. He was a Marie Skłodowska-Curie fellow at Ghent University from 2006 to 2009 and a future fellow at the Australian Research Council from 2012 to 2016.

TIM PENTTILA is an Australian mathematician whose research interests include geometry, group theory, and combinatorics. He was an academic at the University of Western Australia for 20 years and a professor at Colorado State University for 10 years.

"This book provides a lively and lovely perspective on real projective spaces, combining art, history, groups, and elegant proofs."

- William M. Kantor

"This book is a celebration of the projective viewpoint of geometry. It gradually introduces the reader to the subject, and the arguments are presented in a way that highlights the power of projective thinking in geometry. The reader surprisingly discovers not only that Euclidean and related theorems can be realised as derivatives of projective results, but there are also unnoticed connections between results from ancient times. The treatise also contains a large number of exercises and is dotted with worked examples, which help the reader to appreciate and deeply understand the arguments they refer to. In my opinion this is a book that will definitely change the way we look at the Euclidean and projective analytic geometry."

- Alessandro Siciliano, Università degli Studi della Basilicata

Analytic Projective Geometry

John Bamberg
University of Western Australia

Tim Penttila
University of Adelaide

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,
New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781009260596

DOI: 10.1017/9781009260626

© John Bamberg and Tim Penttila 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

A catalogue record for this publication is available from the British Library.

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-009-26059-6 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Prefa	Preface		
	Part	I The Real Projective Plane		
1	Fundamental Aspects of the Real Projective Plane			
	1.1	Parallelism	3	
	1.2	Perpendicularity	3	
	1.3	Duality	6	
	1.4	Two Models of the Real Projective Plane	6	
	1.5	Recap: The Real Projective Plane as Involving Points		
		and Lines	10	
	Exerc	cises	11	
2	Collineations		12	
	2.1	The Projective General Linear Group	12	
	2.2	The Fundamental Quadrangle	15	
	2.3	The Fundamental Theorem of Projective Geometry	17	
	2.4	Interlude: Homogenisation of Polynomials	26	
	Exercises		28	
3	Polarities and Conics		31	
	3.1	Dualities and Polarities	32	
	3.2	Conics	34	
	Exercises		40	
4	Cross-Ratio		43	
	4.1	Introduction to Cross-Ratio	43	
	4.2	Perspectivities	47	
	4.3	Cross-Ratio of Lines	56	
	4.4	Interlude: From Affine Ratio to Cross-Ratio	58	

viii Contents

	4.5	Harmonic Quadruples	64
	4.6	Interlude: Some Invariant Theory	73
	4.7	Some Applications of Cross-Ratio	76
	Exerci	ises	80
5	The Group of the Conic		
	5.1	The Projective Line and the Conic	83
	5.2	Frégier Involutions	86
	5.3	Pencils of Conics	90
	5.4	Cross-Ratio on a Conic	93
	Exerc	ises	98
6	Involution		100
	6.1	Basics on Involutions	101
	6.2	Imaginary Points	102
	6.3	The Involution Theorems of Pappus and Desargues	107
	6.4	Pascal's Theorem	119
	6.5	The Chasles–Steiner Theorem	137
	6.6	Quadrangular Sets	156
	Exercises		159
7	Real Affine Plane Geometry from a Projective Perspective		163
	7.1	Affinities	165
	7.2	Parallel Projection	168
	7.3	The Theorems of Ceva and Menelaus	170
	7.4	Affine Conics: Ellipse, Hyperbola, Parabola	174
	Exercises		182
8	Euclidean Plane Geometry from a Projective Perspective		
	8.1	Perpendicularity of Lines and Triangle Theorems	184 184
	8.2	Circular Points and Euclidean Conics	197
	8.3	Axes, Diameters, Foci	220
	Exerci		236
9	Transformation Coomatury Vlain's Point		
,	Transformation Geometry: Klein's Point of View		
		A Tower of Groups	241 242
	9.2	Cayley–Klein Geometries	243
	9.3	Descending the Klein Tower	245
10		Power of Projective Thinking	246
10	10.1	Euclidean and Affine Connections	246 246
	10.1	Advanced Theory Using Involutions	256
	Exerci	•	286

		Contents	iz
11	From	Perspective to Projective	288
	11.1		288
	11.2	Naturalism in Art	289
	11.3	Brunelleschi	293
	11.4	Optics	29:
	11.5	Mirrors	298
	11.6	Camera Obscura	299
	11.7	Leon Battista Alberti	30
	11.8	The Mathematics of Perspective	302
	11.9	Guidobaldo Del Monte	304
	11.10	The Infinitude of Space	305
	11.11	Does the Infinity of Space Follow from the Use of	
		Perspective Methods?	300
	11.12	Points at Infinity	308
	11.13	Line at Infinity	31
	11.14	Geometry as the Study of Space	313
	11.15	Epilogue	314
12	Rema	rks on the History of Projective Geometry	317
	Part 1	II Real Projective 3-Space	
13	Funda	amental Aspects of Real Projective Space	323
	13.1	The Complex Projective Plane	332
	13.2	The Absolute Conic	334
	Exerci	ses	33
14	Trian	gles and Tetrahedra	338
	14.1	Triangles	338
	14.2	Tetrahedra	339
	Exerci	ises	34
15	Reguli and Quadrics		348
	15.1	Reguli	348
	15.2	Quadrics and Polarities	352
	15.3	Eight Associated Points	364
	Exerci	ises	360
16	Line Geometry		368
	16.1	Linear Independence of Lines and Plücker Coordinates	368
	16.2	Linear Congruences	375
	16.3	Linear Complexes	376

x Contents

	16.4	Twisted Cubics	378
	Exerc	ises	386
17	Projections		388
	17.1	Central Projections	388
	17.2	Singular Projections and Singular Polarities	391
	17.3	Computer Vision	393
	Exercises		396
18	A Glance at Inversive Geometry		397
	18.1	The Real Inversive Plane	397
	18.2	Lester's Theorem	402
	Exercises		403
	Part	III Higher Dimensions	
19	Generalising to Higher Dimensions		407
	19.1	The Basic Properties of Higher-Dimensional Space	407
	19.2	Quadrics and Polarities	410
	19.3	Associated Secunda and Lines	412
	Exercises		420
20	The Klein Quadric and the Veronese Surface		421
	20.1	The Klein Correspondence	421
	20.2	Rational Normal Curves	428
	20.3	The Veronese Surface	429
	Exercises		433
	Appendix: Group Actions		434
	References		436
	Index		457

Preface

Projective geometry is the geometry of vision. Yet Arthur Cayley saw that it is all geometry. The mathematical historian Morris Kline called it the 'science born of art', and the very early history of its development from that origin is documented in the book The Geometry of an Art by the later mathematical historian Kirsti Andersen. Some of those developments (and some later ones) appear in Chapters 11 and 12, and what Cayley meant is explained in Chapters 7 through 10. Felix Klein also advocated for the centrality of projective geometry, but is better known for bringing out the central role of symmetry in geometry in his Erlangen Programme. Our treatment of most of the topics in this book emphasises this central role of symmetry, through the prominent place we assign groups, and we also explain Klein's view on transformation geometry in Chapter 9. Moreover, this whole subject has a close relationship with linear algebra, and this underpins our treatment. What Jürgen Richter-Gebert calls 'the beauty that lies in the rich interplay of geometric structures and their algebraic counterparts' is a recurring theme of our book. Finally, we try to illustrate some of the advantages gained by taking a projective approach to geometry in Chapter 10, where we obtain connections between seemingly distant (and ancient) results in Euclidean geometry via the perspective hard-won in the earlier chapters.

This book is an introduction to projective geometry, and our coordinates are mostly over the real numbers. However, there is advanced and novel material for the practician. Chapter 6 examines one of the leitmotifs of this book – *involutions* and their role in projective geometry. This is taken much further in Section 10.2, where we begin with an old result of Pappus, and explore the more modern theorems of Ferrers, Jeřábek, Lehmer & Daus, Gardner & Gale, Robson & Strange, and their astounding synergy.

xii Preface

We find that an approach that teaches the subject conceptually while also sketching its development resonates with us as teachers and authors, and also hope that it will find sympathetic vibrations in students and readers.