Data Structures and Algorithms in Java

Learn with confidence with this hands-on undergraduate textbook for CS2 courses. Active learning and real-world projects underpin each chapter, briefly reviewing programming fundamentals then progressing to core data structures and algorithms topics, including recursion, lists, stacks, trees, graphs, sorting, and complexity analysis. Creative projects and applications put theoretical concepts into practice, helping students master the fundamentals. Dedicated project chapters supply further programming practice using real-world, interdisciplinary problems which students can showcase in their own online portfolios. Example Interview Questions sections prepare students for job applications. The pedagogy supports self-directed and skills-based learning with over 250 "Try It Yourself" boxes, many with solutions provided, and over 500 progressively challenging end-of-chapter questions. Written in a clear and engaging style, this textbook is a complete resource for teaching the fundamental skills that today's students need. Instructor resources are available online, including a test bank, solutions manual, and sample code.

Dan S. Myers is Associate Professor of Computer Science at Rollins College in Winter Park, Florida, where he has taught Data Structures and Algorithms for 10 years.

"An intuitive and engaging introduction to foundational content; a terrific source for anyone looking to dive deeper into computer science!"

Remzi Arpaci-Dusseau, University of Wisconsin-Madison

"This book teaches data structures with an active learning approach. Students will first learn the constructs, then get hands-on experience by applying what they learned in real projects. In addition, the try-it-yourself sections are really helpful as simple brain teasers to ensure that students got the point. Students will be more engaged by learning this way."

Mohammed Farghally, Virginia Tech

"Data Structures and Algorithms in Java by Dan Myers is a carefully crafted book for second-level CS students, right after learning the rudiments of at least one programming language (be it Python, C/C++, or Java) and doing basic programming. To fill the gap from simple programming to serious CS, art, and natural science applications programming, a fundamental course is needed. Often named 'Data Structures and Algorithms,' this course helps students to learn beyond basic data structures such as numbers and arrays, and to move to the world of lists, stacks, hash tables, trees, queues, heaps, and graphs. There are also the fundamental algorithms, such as searching, sorting, hashing, and binary tree traversal algorithms, which are the building blocks of more complicated algorithms needed to develop applications programs. Here is an excellent book that skillfully brings students to serious programming, by providing meaningful explanations, beautiful figures, and short but to-the-point code fragments. The exercises at the end of every chapter are very helpful. Fascinating projects every few chapters make even an experienced programmer want to try, such as particle effects, generative art, fractals, logic puzzles, and specialized search engines. I strongly urge the CS instructor to consider this book before making commitment to their often-used textbook."

Çetin Kaya Koç, University of California, Santa Barbara

"With beautifully accessible prose, Professor Myers opens the door wide to a field known for its formidable jargon and subtle technical detail. This text offers scaffolded, incremental learning as well as innovative and engaging projects, all well designed and supported by a wealth of diverse exercises. His rich, interdisciplinary contexts also demonstrate the centrality of algorithms in many human endeavors."

Trevor Kearns, Greenfield Community College

"I wholeheartedly endorse *Data Structures and Algorithms in Java*. Its unique project-based approach effectively merges theory with practical application, making it an invaluable resource for undergraduate students. The book's emphasis on hands-on learning through Java programming projects elevates the understanding and deepens the knowledge of the applicability of data structures."

Tajmilur Rahman Md, Gannon University

"Data Structures and Algorithms in Java is a must-read for aspiring programmers. The book bridges theory and practice seamlessly using real-world projects illustrating key concepts. The book covers a wide array of data structures from the simple stack to the more complex graph. The author's beginner-friendly approach makes it an excellent companion for self-learners and computer science students alike."

Lilian Blot, University of York

"The examples of projects offer a fun yet insightful way to boost students' creativity and enhance their problem-solving skills following the 'Try It Yourself' approach, ensuring the understanding of each concept."

Jeong Yang, Texas A&M University-San Antonio

"Dr. Myers carefully balances teaching students the Java they need after an introductory programming course with building more complex projects that students can use in their job portfolios. It covers the fundamental data structures and algorithms students need to know while immediately applying those ideas to longer-form projects in areas of student interest."

Brian Patterson, Oglethorpe University

"A stand-out feature of this book is its project-based approach, which bridges theoretical content with real-world applications. This method not only enhances students' understanding of data structures and algorithms, but also prepares them for technical roles through a variety of creative projects."

Bailin Deng, Cardiff University

"This book goes beyond the typical scope of a data structures and algorithms textbook. The carefully described projects are excellent examples of how to structure large programs."

Christian Trefftz, Grand Valley State University

"I have developed many techniques, tools, and examples to facilitate learning in my data structures classes. Dan Myers' textbook incorporates many similar strategies – it is conversational, establishes a foundation for new concepts and techniques then builds upon the foundation. It also incorporates numerous examples and problems, including historical references, making the material more interesting. This is a refreshing take on a potentially dry subject."

Dave Rosenberg, Wentworth Institute of Technology

"The project-based approach in the book highlights the real-world applications of topics presented, and facilitates greater understanding and clarity. The interview questions included underscore the importance of the concepts beyond the classroom. Several sections introduce new topics in simple terms along with relevant fun facts which draw the reader in and make the learning process an engaging one. Highly recommended!"

Omofolakunmi Olagbemi, Hope College

"Professor Myers' project-based approach not only motivates students but also offers a practical framework for applying complex concepts effectively. The projects in this text provide context for decision-making and enhance understanding through practical applications. Each project builds a solid foundation fostering thoughtful engagement with challenging material."

Michael Penta, Northern Essex Community College

Data Structures and Algorithms in Java A Project-Based Approach

Dan S. Myers

Rollins College, Florida

Cambridge University Press & Assessment 978-1-009-26033-6 — Data Structures and Algorithms in Java Dan S. Myers Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India 103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467 Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge. We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/highereducation/isbn/9781009260336 DOI: 10.1017/9781009260350 © Cambridge University Press & Assessment 2025 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment. When citing this work, please include a reference to the DOI 10.1017/9781009260350 First published 2025 Printed in Mexico by Litográfica Ingramex, S.A. de C.V, 2025 A catalogue record for this publication is available from the British Library A Cataloging-in-Publication data record for this book is available from the Library of Congress ISBN 978-1-009-26033-6 Hardback Additional resources for this publication at www.cambridge.org/myers Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

This publication is not sponsored, affiliated, or endorsed by Oracle or Java.

Cambridge University Press & Assessment 978-1-009-26033-6 — Data Structures and Algorithms in Java Dan S. Myers Frontmatter <u>More Information</u>

For Chelsea, who helped make it possible

Cambridge University Press & Assessment 978-1-009-26033-6 — Data Structures and Algorithms in Java Dan S. Myers Frontmatter <u>More Information</u>

Contents

Preface

1

page xxiii

Alg	orithms+Data Structures = Programs	1		
	Overview	1		
	Learning Objectives	1		
	Goals	1		
	A Brief History of Algorithms	2		
Why Do Data Structures and Algorithms Matter to Real-World Programmers?				
	Learning from This Book	5		
	Summary	6		
	Exercises	6		
Notes and Further Reading				
Java	a Fundamentals	8		
	Introduction	8		
	Learning Objectives	8		
1.1	Hello, Java!	9		
	1.1.1 The First Program	9		
	1.1.2 How Java Programs Execute	11		
1.2	Variables and Data Types	11		
	1.2.1 Declaring Variables	12		
	1.2.2 Variable Names	12		
	1.2.3 Primitive and Object Types	12		
		14		
	1.2.4 Arithmetic	14		
	1.2.5 Casting	14 16		

Cambridge University Press & Assessment 978-1-009-26033-6 — Data Structures and Algorithms in Java Dan S. Myers Frontmatter <u>More Information</u>

Х

Contents

1.3	Work	ing with Objects	16
	1.3.1	Reading User Input with Scanner	16
	1.3.2	Constants and Formatted Printing	19
	1.3.3	Run-Time Exceptions	20
	1.3.4	Calculations with Math	20
1.4	Cond	itional Execution	22
	1.4.1	Relational and Logical Operators	22
	1.4.2	The if-else Statement	23
	1.4.3	Cho-han	25
	1.4.4	Comparing Strings and Other Objects	28
1.5	Loops	8	30
	1.5.1	The while Loop	30
	1.5.2	The for Loop	31
	1.5.3	Monte Carlo Simulation	33
1.6	Static	Methods	35
	1.6.1	Writing Methods	35
	1.6.2	Automatic Documentation with JavaDoc	37
1.7	Proje	ct: Substitution Ciphers	38
	1.7.1	The Caesar Cipher	39
	1.7.2	The Vigenère Cipher	42
	1.7.3	The Polybius Square	44
	1.7.4	The Russian Nihilist Cipher	47
	Summ	nary	49
	Exerc	ises	50
	Notes	and Further Reading	55

2	Obj	ect-Oriented Programming	57
		Introduction	57
		Learning Objectives	57
	2.1	The Concept of Object-Oriented Programming	57
		2.1.1 Classes and Objects	58
		2.1.2 Encapsulation	58
		2.1.3 Advantages and Disadvantages	59
	2.2	Developing a Class Step by Step	60
		2.2.1 The Simplest Class: A Collection of Related Variables	60
		2.2.2 Custom Constructors	62
		2.2.3 The toString Method	64

Cambridge University Press & Assessment 978-1-009-26033-6 — Data Structures and Algorithms in Java Dan S. Myers Frontmatter <u>More Information</u>

Contents

	224		< -
	2.2.4	Access Modifiers	65
	2.2.5	Accessor and Mutator Methods	66
	2.2.6	Throwing Exceptions	68
	2.2.7	More on the static Keyword	69
	2.2.8	Null Objects	71
2.3	The A	rrayList Class	71
	2.3.1	Creating an ArrayList	72
	2.3.2	Useful Methods	72
	2.3.3	Working with Primitive Types	74
2.4	Projec	ct: Deck of Cards	74
	2.4.1	Enumerated Types	74
	2.4.2	The Card Class	76
	2.4.3	The Deck Class	78
	2.4.4	Hi-Lo	82
	Sumn	nary	84
	Exerc	ises	84
	Notes	and Further Reading	90

3 Project: Mindstorms

	Introduction	91
	Learning Objectives	91
3.1	Introduction to Java Graphics	91
	3.1.1 Drawing Shapes	92
	3.1.2 Graphics Methods	93
	3.1.3 Colors	95
3.2	Project: Do-It-Yourself Turtle Graphics	96
	3.2.1 Basic Commands	96
	3.2.2 Setup	97
	3.2.3 Instance Variables and Constructor	101
	3.2.4 Moving and Angles	102
	3.2.5 Drawing	104
	3.2.6 Adding New Commands	105
	3.2.7 Complex Shapes	105
	Summary	109
	Extensions	110
	Notes and Further Reading	111

Cambridge University Press & Assessment 978-1-009-26033-6 — Data Structures and Algorithms in Java Dan S. Myers Frontmatter <u>More Information</u>

xii

Contents

4	Arr	Arrays	
		Introduction	112
		Learning Objectives	112
	4.1	One-Dimensional Arrays	112
		4.1.1 Creating and Accessing Arrays	113
		4.1.2 Looping over Arrays	114
		4.1.3 Modifying an Array in a Method	116
	4.2	Multidimensional Arrays	118
		4.2.1 Creating Multidimensional Arrays	119
		4.2.2 The "Array of Arrays" Model and Ragged Arrays	120
		4.2.3 Looping over Two-Dimensional Arrays	121
		4.2.4 Ancient Algorithms: Magic Squares	123
	4.3	Project: Cellular Automata	126
		4.3.1 One-Dimensional Elementary Cellular Automata	126
		4.3.2 Visualizing Elementary Cellular Automata	128
		4.3.3 Conway's Life	132
		4.3.4 Animating Life	135
	4.4	Example Interview Questions Using Arrays	143
		4.4.1 Removing Elements	143
		4.4.2 Rotate an Array	144
		4.4.3 Maximum Subarray Sum	145
		Summary	146
		Exercises	147
		Notes and Further Reading	153

5	Searching and an Introduction to Algorithm Analysis		154	
		Introduction	154	
		Learning Objectives	154	
	5.1	Linear Search and Algorithm Performance	154	
	5.2	Binary Search	156	
	5.3	Project: Experimental Performance Analysis	159	
		5.3.1 Best, Worst, and Average Case Performance	159	
		5.3.2 Measuring Execution Time	159	
	5.4	The Growth of Functions	162	
	5.5	Big-O Notation	163	
	5.6	Applying Big-O Analysis to Programs	165	

Cambridge University Press & Assessment 978-1-009-26033-6 — Data Structures and Algorithms in Java Dan S. Myers Frontmatter <u>More Information</u>

Contents

5.7	Detailed Analysis of Binary Search	167
	5.7.1 Correctness Using a Loop Invariant	167
	5.7.2 Complexity	169
5.8	Common Complexities	171
5.9	Other Notations: Ω and Θ	171
	5.9.1 Ω Notation for Lower Bounds	172
	5.9.2 Θ Notation for Exact Bounds	172
5.10	Limitations of Asymptotic Analysis	173
	Summary	173
	Exercises	174
	Notes and Further Reading	177

6 Lists

	Intro	duction	178
	Learn	ning Objectives	178
6.1	Abstr	ract Data Types	178
	6.1.1	Separating Behaviors from Implementation	179
	6.1.2	The List Abstract Data Type	179
6.2	Array	v Lists	180
	6.2.1	Array List Structure	181
	6.2.2	Implementing an ArrayList Class	182
	6.2.3	Amortized Analysis of the Append Operation	185
	6.2.4	Removing and Inserting	187
6.3	Linke	ed Lists	189
	6.3.1	Linked List Implementation	189
	6.3.2	Adding to the Front	190
	6.3.3	Getting an Item	191
	6.3.4	Inserting at an Arbitrary Location	192
	6.3.5	Removing	195
	6.3.6	Doubly Linked and Circular Lists	197
6.4	Proje	ct: Snake	201
	6.4.1	The Snake class	202
	6.4.2	Class Members and Constructor	204
	6.4.3	Keyboard Input with the KeyListener Interface	205
	6.4.4	The paint Method	206
	6.4.5	The Main Game Loop	207
6.5	Exam	ple Interview Questions Using Lists	210

Cambridge University Press & Assessment 978-1-009-26033-6 — Data Structures and Algorithms in Java Dan S. Myers Frontmatter <u>More Information</u>

xiv

Contents

6.5.1 Comparing Linked and Array Lists	210
6.5.2 Reversing a List	210
6.5.3 The Tortoise and Hare Algorithm	211
Summary	212
Exercises	213
Notes and Further Reading	

7 Project: Particle Effects

216

240

240

	Introduction	216
	Learning Objectives	216
7.1	Falling Sand	217
	7.1.1 Listening for Mouse Input	219
	7.1.2 Falling Physics	220
	7.1.3 Better Performance with Double Buffering	223
	7.1.4 Adding Colors	224
7.2	Boids	225
	7.2.1 Flocking with Particles	226
	7.2.2 Starting Code	227
	7.2.3 The Boid Class	230
	7.2.4 Implementing the Flocking Rules	231
	Summary	233
	Extensions	233
	Notes and Further Reading	239

8 Recursion

	Learn	ing Objectives	240
8.1	Writing Recursive Methods		240
	8.1.1	Mathematical Functions	241
	8.1.2	Recursive Binary Search	243
	8.1.3	How Recursive Methods Execute	244
	8.1.4	Stack Overflow Errors	247
	8.1.5	Recursion vs. Iteration	247
8.2	Analy	zing Recursive Algorithms	249
	8.2.1	Recurrence Relations	249

Cambridge University Press & Assessment 978-1-009-26033-6 — Data Structures and Algorithms in Java Dan S. Myers Frontmatter <u>More Information</u>

Contents

	8.2.2	Proving Correctness Using Mathematical Induction	250
8.3	Exam	ple: Drawing Recursive Trees	252
	8.3.1	Symmetric Trees	252
	8.3.2	Adjusting Branch Thickness	254
	8.3.3	Asymmetric and Randomized Trees	255
8.4	Exam	ple Interview Questions Using Recursion	258
	8.4.1	Reverse a List	258
	8.4.2	Decimal to Binary Conversion	259
	8.4.3	Moving on a Chessboard	260
	Sumn	hary	261
	Exerc	ises	262
	Notes	and Further Reading	265

9Project: Generative Art and Fractals266

	Introduction	266
	Learning Objectives	266
9.1	Homage to Homage to the Square	267
9.2	In the Style of Piet Mondrian	271
9.3	Fractals	
	9.3.1 Sierpiński's Carpet	277
	9.3.2 Vicsek's Cross	280
9.4	The Mandelbrot Set	283
	9.4.1 Definition	283
	9.4.2 Visualizing the Set	285
	9.4.3 Zooming in on a Point	290
	9.4.4 Adding Colors	292
	Extensions	297
	Notes and Further Reading	

10Sorting300Introduction300Learning Objectives30010.1Sorting Preliminaries30010.1.1Comparing and Ordering Items30010.1.2Standard Libraries Exist, So Why Are You Reading this Book?301

XV

Cambridge University Press & Assessment 978-1-009-26033-6 — Data Structures and Algorithms in Java Dan S. Myers Frontmatter <u>More Information</u>

V	71
~	<u>' L</u>

Contents

10.2	Quadratic Sorting Algorithms	302
	10.2.1 Selection Sort	302
	10.2.2 Insertion Sort	304
10.3	Quicksort	307
	10.3.1 Sorting by Divide-and-Conquer	307
	10.3.2 Partitioning	309
	10.3.3 Correctness of partition	312
	10.3.4 Intuitive Analysis	313
	10.3.5 Worst-Case Analysis	315
	10.3.6 Average-Case Analysis with Random Pivots	315
	10.3.7 Improving Quicksort	317
	10.3.8 Java's Arrays.sort	318
10.4	Merge Sort	318
	10.4.1 Implementation	318
	10.4.2 Analysis	323
	10.4.3 Merge Sort in Practice: Python's Timsort	323
10.5	Radix Sorting	324
10.6	Example Interview Questions Using Sorting	327
	10.6.1 Problems Where You Sort and then Do Something	327
	10.6.2 Finding the Median with Quickselect	328
	10.6.3 National Flag Problems	329
	Summary	330
	Exercises	331
	Notes and Further Reading	334

11 Stacks

	Introduction	336
	Learning Objectives	336
11.1	The Stack Abstract Data Type	336
	11.1.1 Stack Methods	337
	11.1.2 Example: Validating HTML	337
	11.1.3 Implementations	342
11.2	Stack-Based Arithmetic	343
	11.2.1 Prefix and Postfix Notations	344
	11.2.2 Evaluating Postfix Expressions with a Stack	345
	11.2.3 Converting Infix Expressions to Postfix	347
11.3	Project: Tiny Web Browser	349

Cambridge University Press & Assessment 978-1-009-26033-6 — Data Structures and Algorithms in Java Dan S. Myers Frontmatter <u>More Information</u>

Contents

xvii

11.3.1 Viewing an HTML Page 350 11.3.2 Listening for Link Events 354 11.3.3 Implementing the Address Bar and Back Button 354 11.4 Example Interview Questions Using Stacks 356 11.4.1 Removals to Make Matching Parentheses 356 11.4.2 Constant Time Minimum Operation 358 Summary 359 Exercises 359 Notes and Further Reading 361

12 Project: Logic Puzzles

Introduction 362 Learning Objectives 362 12.1 Solving Puzzles by Backtracking 362 12.1.1 Latin Squares 363 12.1.2 The Backtracking Search Strategy 364 12.1.3 Implementation 367 12.1.4 Sudoku 369 12.2 Who Owns the Fish? 370 12.2.1 Representing the Solution 371 12.2.2 Search Procedure 374 12.2.3 Coding the Constraints 375 377 Summary Extensions 378 Notes and Further Reading 381

13	Que	Queues and Buffers		
		Introduction	382	
		Learning Objectives	382	
	13.1	The Queue Abstract Data Type	382	
		13.1.1 Queue and Deque Methods	383	
		13.1.2 Java's Queue and Deque Interfaces	383	
	13.2	Queue and Deque Implementations	384	
		13.2.1 Using LinkedList	384	
		13.2.2 Array-Based Circular Buffers	384	
		13.2.3 A CircularBuffer Class	386	

Cambridge University Press & Assessment 978-1-009-26033-6 – Data Structures and Algorithms in Java Dan S. Myers Frontmatter More Information

				-
	•			
	_	_	_	_

Contents

13.3	Application: Flood-Filling	388
	13.3.1 The Breadth-First Flooding Algorithm	389
	13.3.2 Flood-Filling in a Matrix Using ArrayDeque	390
13.4	Example Interview Questions Using Queues	392
	13.4.1 Count the Number of Islands	392
	13.4.2 Fairy Chess Pieces	393
	Summary	395
	Exercises	395
	Notes and Further Reading	398

14 Hashing

Introduction 399 Learning Objectives 399 14.1 Hash Functions 399 14.1.1 Java's hashCode 400 14.1.2 A Real-World Hash Function: MurmurHash3 401 14.1.3 Properties of Good Hash Functions 403 14.1.4 Cryptographic Hash Functions 404 14.1.5 Application: Message Authentication 405 14.2 Project: Password Cracking 406 14.2.1 Shadow Password Files 406 14.2.2 Cryptographic Hashing with MessageDigest 407 408 14.2.3 Brute-Force Cracking 14.2.4 Dictionary Attacks 411 14.3 Application: Proof-of-Work and Bitcoin 413 14.3.1 Fighting Email Spam with Hashing 413 14.3.2 Proof-of-Work in the Bitcoin Blockchain 414 Summary 415 Exercises 415 Notes and Further Reading 417

15 **Hash Tables** 419 Introduction 419 Learning Objectives 419 419

	Learning Objectives
15.1	The Map Abstract Data Type
	15.1.1 Map Methods

420

Cambridge University Press & Assessment 978-1-009-26033-6 — Data Structures and Algorithms in Java Dan S. Myers Frontmatter More Information

Contents

xix

15.1.2 Java's HashMap	421
Implementing Hash Tables	423
15.2.1 Direct Addressing	423
15.2.2 Chained Hashing	425
15.2.3 Analyzing Chaining	428
15.2.4 Open Addressing with Probing	430
15.2.5 Cuckoo Hashing	432
Example Interview Questions Using Hash Tables	433
15.3.1 Representing a Set	433
15.3.2 Find the Pairs with a Given Sum	434
15.3.3 Finding Anagrams	434
Summary	435
Exercises	436
Notes and Further Reading	438
	 15.1.2 Java's HashMap Implementing Hash Tables 15.2.1 Direct Addressing 15.2.2 Chained Hashing 15.2.3 Analyzing Chaining 15.2.4 Open Addressing with Probing 15.2.5 Cuckoo Hashing Example Interview Questions Using Hash Tables 15.3.1 Representing a Set 15.3.2 Find the Pairs with a Given Sum 15.3.3 Finding Anagrams Summary Exercises Notes and Further Reading

16	Project: Ye Olde Shakespearean Search Engine		
		Introduction	439
		Learning Objectives	439
	16.1	Building a Search Index	439
	16.2	Implementation	441
		16.2.1 Getting the Text	442
		16.2.2 The Location Class	443
		16.2.3 The Driver Class	444
		16.2.4 The Index Class	445
		16.2.5 Adding a Script to the Index	448
		16.2.6 Constructing the Index	450
		16.2.7 Putting It All Together	451
	16.3	Extending to Web Search	451
		Summary	452
		Extensions	452
		Notes and Further Reading	454

17	Binary Trees	455
	Introduction	455
	Learning Objectives	455

Cambridge University Press & Assessment 978-1-009-26033-6 — Data Structures and Algorithms in Java Dan S. Myers Frontmatter <u>More Information</u>

XX

Contents

Representing Hierarchical Data	455
17.1.1 Dendrology	455
17.1.2 Binary Trees	457
17.1.3 Implementation	458
Tree Traversals	460
Application: Syntax Trees	464
Binary Search Trees	468
17.4.1 Properties	468
17.4.2 Searching	469
17.4.3 Insertion	471
17.4.4 Deletion	473
17.4.5 Analysis	479
Example Interview Questions Using Trees	480
17.5.1 Mirror a Binary Tree	480
17.5.2 Checking If a Tree Is Height Balanced	482
Summary	483
Exercises	483
Notes and Further Reading	486
	Representing Hierarchical Data 17.1.1 Dendrology 17.1.2 Binary Trees 17.1.3 Implementation Tree Traversals Application: Syntax Trees Binary Search Trees 17.4.1 Properties 17.4.2 Searching 17.4.2 Searching 17.4.3 Insertion 17.4.4 Deletion 17.4.5 Analysis Example Interview Questions Using Trees 17.5.1 Mirror a Binary Tree 17.5.2 Checking If a Tree Is Height Balanced Summary Exercises Notes and Further Reading

18 Self-Balancing Search Trees

Introduction 488 Learning Objectives 488 2-3-4 Trees 18.1 488 18.1.1 Nonbinary search trees 489 18.1.2 Insertion 490 18.1.3 Deletion 491 18.1.4 Going Wider: B-trees 495 18.2 Red-Black Trees 497 18.2.1 Red-Black Ordering Rules 497 18.2.2 Connection to 2-3-4 Trees 499 18.2.3 Bounds on the Height of the Tree 500 18.2.4 Insertion 500 18.2.5 Deletion 506 Summary 513 Exercises 513

Notes and Further Reading 516

19

Contents **Heaps and Priority Queues** 517 Introduction 517 Learning Objectives 517 19.1 Tree-Based Heaps 517 19.1.1 Definition 518 19.1.2 Inserting into a Heap 518 520 19.1.3 Removing the Root Element 19.1.4 Initializing a Heap 521 19.1.5 Analysis of Bottom-Up Initialization 522 19.2 Implementing a Heap in an Array 523 19.2.1 Parent-Child Relationships 523 19.2.2 A Heap Class 524 19.3 Application: Heapsort 529 19.4 Example Interview Questions Using Heaps 532 19.4.1 Verify If a Binary Tree Is a Heap 532 19.4.2 Merging Sorted Lists 533 19.4.3 Find the Top-k Largest Elements in an Array 534 534 Summary Exercises 535 536 Notes and Further Reading

20 Graph Algorithms

	Introduction	538
	Learning Objectives	538
20.1	Graph Basics	538
	20.1.1 Some Important Graph Terms	539
	20.1.2 Representing Graphs	541
	20.1.3 Graphs (or the Lack Thereof) in Java	543
20.2	Traversals	545
	20.2.1 Breadth-First Traversal	545
	20.2.2 Depth-First Traversal	547
	20.2.3 Application: Garbage Collection	549
20.3	Shortest Paths	552
	20.3.1 Dijkstra's Algorithm	552
	20.3.2 Analyzing Dijkstra's Algorithm	555
20.4	Example Interview Questions Using Graphs	559

xxi

Cambridge University Press & Assessment 978-1-009-26033-6 — Data Structures and Algorithms in Java Dan S. Myers Frontmatter <u>More Information</u>

xxii

Contents

20.4.1 Snakes and Ladders	559
20.4.2 Finding Cycles	560
Summary	562
Exercises	562
Notes and Further Reading	565

21	Project: Graph-Based Recommendation Engine		
		Introduction	566
		Learning Objectives	566
	21.1	Bipartite Graphs	566
		21.1.1 Definition	567
		21.1.2 Testing If a Graph Is Bipartite	568
	21.2	Building the Recommendation System	570
		21.2.1 The Object Graph and Random Walks	570
		21.2.2 Implementation	572
		Summary	577
		Extensions	577
		Notes and Further Reading	580

22 Project: Twisty Little Passages

581

	Introduction	581
	Learning Objectives	581
22.1 Minimum Spanning Trees		581
	22.1.1 Kruskal's Algorithm	582
	22.1.2 Prim's Algorithm	586
	22.1.3 Correctness	590
22.2 Maze Generation		591
	22.2.1 Perfect Mazes and Spanning Trees	591
	22.2.2 Implementation	592
	Summary	600
	Extensions	600
	Notes and Further Reading	602
References		604

Index

Cambridge University Press & Assessment 978-1-009-26033-6 — Data Structures and Algorithms in Java Dan S. Myers Frontmatter More Information

Preface

Teaching our students how to understand and use algorithms is the heart of the computer science curriculum. The relevance of algorithms to the modern world may seem obvious, but the unfortunate reality is that many of our students will finish their data structures and algorithms coursework with no idea how the material applies to actual software development. This book fills a gap in the data structures and algorithms literature by offering students and instructors an engaging and carefully curated text that presents all of the fundamental material of the data structures and algorithms course while also emphasizing meaningful applications in CS, the arts, and the natural sciences. Every content-based chapter is paired with at least one significant project or application illustrating how to use the chapter's theory in a creative context.

Motivation and Content

This book is aimed at the standard undergraduate "CS2" course that presents the core content of data structures and algorithms (sorting, lists, trees, complexity analysis, etc.) to students who have already completed introductory programming. It emerged as a response to real challenges I've encountered while teaching CS2 over the past 10 years, which I think will resonate with instructors at a broad range of institutions:

- **Review of CS1 material**. Many universities expect students to take CS2 as their second programming-focused course, typically after one semester covering the fundamentals of programming. Therefore, the CS2 course needs to begin with a review of fundamental concepts and a deeper presentation of object-oriented programming before introducing new material. This problem has become more acute in recent years as programs have shifted their introductory class to Python while keeping the data structures course in Java.
- **Developing students' project portfolios**. Job-market demand for CS graduates remains high, but competition for the best internships and full-time jobs is intense. Students are under pressure to develop a portfolio of significant projects that they can showcase in job and internship applications. Because students now seek internships earlier, there is often a need to include significant portfolio-ready projects earlier in the curriculum. The CS2 course is an ideal place to incorporate creative projects for early CS majors.
- **Relevance**. Many data structures resources, including the popular online practice sites, emphasize abstract puzzle-style problem solving. While solving algorithmic puzzles

Cambridge University Press & Assessment 978-1-009-26033-6 — Data Structures and Algorithms in Java Dan S. Myers Frontmatter <u>More Information</u>

xxiv

Preface

can certainly build students' skills, they don't do much to generate enthusiasm for the subject or show how data structures and algorithms connect to interesting applications. Professional developers often associate the subject solely with preparing for technical interviews.

The CS2 course, therefore, needs to do several things: build fundamental programming skills, teach theoretical content, prepare students for electives, and get students ready for job and internship applications, while also nurturing their growing engagement with the discipline. Over the coming years, we will likely see the current emphasis on student success and persistence in the CS1 course continue up to the rest of the computer science curriculum. In addition to a greater emphasis on active learning, we'll see a desire for relevance, interdisciplinary applications, and social awareness throughout the CS major. The content of this book was designed with those goals in mind. It features:

- coverage of fundamental data structures and algorithms topics, including recursion, lists, stacks, trees, graphs, sorting, and complexity analysis;
- project-based chapters that apply content in significant software projects, of the kind that could be major assignments or featured in a student's resume and portfolio;
- emphasis on interdisciplinary application areas;
- early review of object-oriented programming for recent CS1 students;
- active learning using reflective questions and solutions integrated throughout the text, informed by extensive undergraduate teaching experience; and
- an additional section in each theoretical chapter illustrating techniques that frequently show up in technical interview questions working through these examples will help students engage with other technical interview resources.

In return, the book makes a careful trade-off to de-emphasize niche data structures, as well as limit coverage of advanced topics in algorithm design and analysis that are more likely to be featured in an upper-level course.

A Project-Based Approach

Every topic includes at least one significant Java programming project illustrating how the theoretical content can apply to interdisciplinary problems. Some of these examples are time-tested standards that will be familiar from previous books, but most are new. The goal of these projects is not only to give students programming practice, but to illustrate how data structures and algorithms are used to solve interesting problems. Examples include:

- a turtle graphics system using the Java Graphics API and object-oriented techniques (Chapter 3);
- particle-based graphic effects and artificial life simulations (Chapter 7);
- writing graphical applications to produce recursive generative art and fractal images, including the famous Mandelbrot set (Chapter 9);
- a small HTML viewer and web browser (Chapter 11);
- password cracking and hashing (Chapter 14);

Preface

- a text-based search engine for a Shakespeare play (Chapter 16); and
- a recommendation system using random walks on a bipartite graph (Chapter 21).

The theoretical chapters feature smaller application sections that can be covered as part of a topical lecture. The larger projects are in stand-alone chapters and have been designed to be extensible, so that instructors can present the basic design of each project, work through the example code, and then assign modifications to the basic project as homework. The project chapters are written in a follow-along style that develops each application incrementally. Laboratory or small discussion sections are an ideal environment for presenting and coding the initial project solutions.

The projects and examples do not require any specific platform, development environment, or specialized software libraries. Any desktop or cloud-based editor that can compile and run Java is suitable for the course. All of the projects use straightforward object-oriented Java programming and the Java standard library; there are no projects that rely on custom libraries or elaborate prewritten code that exists outside of the text. After working through the examples and projects in this book, students will be comfortable writing moderate-sized Java programs and will be prepared for upper-level courses on object-oriented software design and algorithm analysis.

Student Background

This book is aimed at early-career computer science students with at least one semester of programming experience and some familiarity with object-oriented programming. It assumes that students have seen (but not yet mastered) the core concepts of structured programming – variables, data types, functions, control structures, I/O, etc. – typically covered in the standard "CS1" course, and that students are comfortable working with moderate-sized programs that combine those features into one application.

Students entering without previous Java experience should spend the first weeks of the class working through the material of Chapters 1 and 2, which introduce the basic elements of Java and object-oriented programming. Chapter 4 presents one-dimensional and two-dimensional arrays. After completing those chapters, students should be comfortable writing CS1-level programs in Java. Students who have already completed a Java course can move a little faster, but reviewing the core material on object-oriented programming and arrays is still recommended. This book focuses on using Java to implement data structures and algorithms topics, so it isn't intended to be a comprehensive guide to all of Java, or to object-oriented software design. For the most part, Java topics are introduced when they're required for a project.

Course Design

Instructors have a number of options when designing a class with this book. Covering every chapter is too much for a one-semester course, so you may prefer to focus on your favorite examples and projects. Additional resources for instructors, including full implementations of all projects and major examples, solutions to the end-of-chapter questions, a test bank, and teaching guide are available online. The text is organized as follows:

Preface

- Chapters 1–4 present Java fundamentals. If students have had a previous course in Java, this can be covered efficiently. Chapter 3, the turtle graphics project, introduces the graphics framework that will be used throughout the first half of the book, so you should include it if you plan to use any of the projects from Chapters 4–9.
- Chapters 5–7 introduce algorithm analysis, Big-O notation, and lists. This is core content for any data structures course. Chapters 6 and 7 also demonstrate interfaces and graphical applications with user input.
- Chapter 8 presents recursion. If students have already seen standard recursive examples in an earlier course, you could cover this material quickly, in preparation for sorting algorithms in Chapter 10. Chapter 9 is a major project covering recursive art and the Mandelbrot fractal viewer.
- Chapters 10–17 cover the fundamental algorithms and data structures: sorting (10), stacks (11), backtracking search (12), queues (13), hashing (14), hash tables (15), and binary search trees (17). These will likely form the core of any CS2 course and you could realistically expect to spend 10 weeks on this material.
- Chapters 18–22 are additional material that may not fit into a one-semester course: self-balancing trees (18), heaps (19), and graphs (20–22).

The following table shows an example 14-week schedule for a course that starts with a review of Java and touches on all of the core content. This sequence covers roughly one chapter per week, with the vision that students will complete one guided project from the text (independently or in a weekly lab meeting), then complete assigned project extensions or a set of end-of-chapter questions for further practice.

Week	Торіс	Chapter	Project
1	Java basics	1	Monte Carlo simulation
2	Java basics cont.	1	Substitution ciphers
3	Objects	2	Card games
4	Graphical applications	3	DIY turtle graphics
5	Arrays	4	Conway's Life
6	Algorithm analysis	5	Ch. 5 practice questions
7	Lists	6	<i>Snake</i> game or particle graphics (Ch. 7)
8	Recursion	8	Fractal art (Ch. 9)
9	Sorting	10	Ch. 10 practice questions
10	Stacks	11	Tiny web browser
11	Backtracking search	12	Logic puzzles
12	Hashing	14	Password cracker
13	Hash tables	15	Text search engine (Ch. 16)
14	Trees	17	Ch. 17 practice questions

This book has enough material for a two-course sequence. Many programs have made the choice to use a "bridge" course that sits between CS1 and CS2, with the goal of helping students transition between early programming and the full data structures course. With this model, the bridge course could cover Chapters 1–9, with their projects, at a moderate pace. The CS2 course would review analysis and recursion and then cover the remaining topics from Chapters 10–22.

Preface

Self-Teaching

This book can also serve as a useful companion for working software developers who want to improve their data structures and algorithms knowledge. Many developers without a formal computer science background find it difficult to bridge the gap between early programming and upper-level theoretical texts on algorithm analysis intended for graduate students. This book was created to provide a smooth introduction to important theoretical topics and also serve as an antidote to the popular view that algorithms are only important for "whiteboard" technical interviews.

If you are using this book to teach yourself, simply start wherever you feel appropriate and work through the material at your own pace. If you have no or limited Java experience, you should definitely start with Chapters 1 and 2. Follow the directions for the example projects and, if time permits, add a few of the extensions. It isn't necessary, or even desirable, to complete every project or end-of-chapter question, so don't force yourself and allow yourself to move on if you become stuck. The sequence of topics and projects given above would also be appropriate for a self-taught developer. Completing that schedule will equip you with the core knowledge required for technical interviews and give a solid base for further study in more advanced books.

Responding to AI

ChatGPT was publicly released while I was halfway through writing this book. Although it remains to be seen how far large-language models will develop, it's fair to say that they're already powerful enough to have a disruptive effect on introductory CS courses. Our traditional model of assessment – leave class, write some small programs, and run them against test cases – fails in the face of automated tools that can solve those problems better than most undergraduates. As teachers, we have to strike a balance between remaining open to AI tools – which are going to be a key part of professional software development going forward – while still equipping our students with fundamental skills.

Although it wasn't originally planned with AI in mind, I believe the approach of this book is one part of that balance. The presentation here emphasizes *context*, rooting the discussion of data structures and algorithms in meaningful larger-scale projects and emphasizing connections across disciplines. Asking students to develop in a hands-on way, by building and extending the specific solutions given in the text, lessens their ability to rely only on an AI tool. Ultimately, though, nothing is safe. It seems likely that every piece of public code will eventually be absorbed into one language model or another, and clever students will always use every tool at their disposal. Now, at this moment, I see this book as one contribution to a conversation about how to continue evolving the curriculum and pedagogy of our discipline.