
Cambridge University Press & Assessment
978-1-009-26033-6 — Data Structures and Algorithms in Java
Dan S. Myers
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Sell your cleverness and buy bewilderment instead.

Cleverness is mere opinion. Bewilderment

brings intuition.

Rumi

Algorithms+Data Structures = Programs

OVERVIEW

There’s a perception that computer science is constantly changing, and in some respects that’s

true: There are always new languages, frameworks, and application domains rising up and old

ones sinking down. All of this change that we see around us, though, is like the top part of an

iceberg. The most visible elements of our �eld are built upon and supported by a deeper layer

of knowledge that’s mostly invisible to the casual observer. This book is about what’s under the

water, the fundamental things that make programming possible, even if we don’t see them right

away.

LEARNING OBJECTIVES

This chapter introduces the topics ahead. By the end of it, you’ll understand:

• How algorithms and data structures work together to create programs.

• Key points from the history of algorithms that are still relevant to us today and the

de�nition of an algorithm.

• Why data structures and algorithms matter to real-world programmers.

• Suggestions for improving your own learning and tips for teaching yourself.

Goals

Consider just a few examples of challenging real-world programming problems:

• predicting moves for a game-playing program;

• implementing a compiler for a new programming language;

• creating digital special e�ects for an animated movie;

• generating procedural content in an open-world game;

• routing data through the network of devices that make up the Internet; and

• building a large language AI model like ChatGPT.

www.cambridge.org/9781009260336
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-26033-6 — Data Structures and Algorithms in Java
Dan S. Myers
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Algorithms+Data Structures = Programs

These problems are all di�erent, but in order to solve them you need an understanding

of both algorithms and data structures. You’ve probably encountered both of these terms

before, even if you haven’t studied them in depth yet. An algorithm, in plain words, is a

precisely speci�ed procedure for solving a problem. Computer programs are algorithms, but

the term could be applied to any series of steps that accomplishes a goal, from assembling

modular furniture to baking a key lime pie. Data structures are standard ways of organizing a

program’s information so that it can be easily accessed andmanipulated. You’ve probably already

encountered some standard data structures, like arrays in Java or C, or lists and dictionaries in

Python.

With that in mind, this book focuses on three major topics:

• A set of fundamental data structures that are essential for every computer scientist and

programmer. Each of the data structures we’ll cover – including lists, stacks, queues, hash

tables, trees, and graphs – represents a particular way of arranging and manipulating

data, and they each have their own strengths and important applications. These are the

most important data structures that occur over and over again throughout computer

science.

• A collection of standard algorithmic techniques that are building blocks of more complex

programs, including recursion, sorting, backtracking, and hashing.

• A framework for comparing algorithms. If two methods solve the same problem, can we

say that one is “better” in a rigorous way? This question is addressed by the techniques

of algorithm analysis, which we’ll use to evaluate the quality of our solutions.

Finally, it’s not enough to simply understand data structures theoretically: you have to use them!

Each chapter of this book will show you how to implement data structures and use them in Java

applications. Some chapters feature larger stand-alone projects that you can feature on a resume

or project portfolio.

A Brief History of Algorithms

The concept of an algorithm has existed since ancient times, although the term itself did not

come into its modern use until the nineteenth century. Clay tablets fromMesopotamia (approx-

imately 2000–1800 BCE) discuss procedures for performing arithmetic by hand and solving

equations that are relevant to agriculture and building (Knuth, 1972). Greek mathematicians

described methods for �nding roots and divisors, estimating π , and solving some classes of

equations.

What, though, is an algorithm, really? Scientists have wrangled over a formal de�nition, but

it’s generally agreed that a procedure must meet some criteria in order to be called an algorithm

(Sha�er, 1997; Cormen et al., 2022):

• It must have well-de�ned inputs and outputs.

• Each stepmust be concrete and feasible. That is, there should be no ambiguity about what

is to be performed at each step and each stepmust be something that a computer (or other

agent executing the algorithm) can actually do. Further, the order of the steps must be

unambiguous.

www.cambridge.org/9781009260336
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-26033-6 — Data Structures and Algorithms in Java
Dan S. Myers
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

A Brief History of Algorithms 3

• It must be correct. For its given inputs, the algorithm must produce correct outputs.

• It should have only a �nite number of instructions. Programs can contain loops or other

control structures, but it has to be possible to write the algorithm down in a form that

allows it to be executed.

• It must terminate. The running time may be infeasibly large, but the method must

eventually end and produce an output.

Try It Yourself

The physicist Richard Feynman is credited with the following algorithm for solving any

problem:

1. Write down the problem.

2. Think very hard.

3. Write down the solution.

Explain why Feynman’s method, clever though it may be, is not really an algorithm.

The term algorithm itself is derived from the ninth-century Islamic Persian scholar

Muh. ammad ibn Mūsā al-Khwārizmı̄. The name al-Khwārizmı̄ means “from Khwarazm,”

which is located in present-day Uzbekistan. He was a true polymath, active in all the scienti�c

�elds of his day, but his legacy is connected to writing on mathematics. His most important

work is al-Kitāb al-Mukhtas.ar fı̄ H. isāb al-Jabr wal-Muqābalah, translated as The Compendious

Book of Calculation by Completion and Balancing, which provided general methods for solving

quadratic equations. The book named the �eld of algebra, from al-Jabr, meaning “completion,”

which refers to the process of moving terms between the two sides of an equation (Gandz,

1926). al-Khwārizmı̄ also wrote texts describing arithmetic using the now-standard system of

Indian-Arabic numerals, which were compiled and translated into Latin asAlgoritmi de numero

Indorum – “Algoritmi on the Indian numbers.” In Europe, the term algorismus came to refer

to the techniques for doing calculation on decimal numbers; by the nineteenth century it had

acquired its modern form and meaning.

Although mathematicians and engineers continued to develop new computational tech-

niques, algorithms didn’t emerge as a distinct �eld of study until the post-World War II period

and the development of electronic computers. The early pioneers of computer science began to

investigate not just algorithms for speci�c problems, but the design and evaluation of algorithms

as its own �eld of study. The study of data structures as a distinct subject developed as computer

science and so�ware engineering matured in the 1960s.

Programming in the earliest days was done in low-level machine languages that gave

programmers a great deal of control but lacked support for abstractions such as variables. As a

result, it was o�en hard to reason about the correctness of programs, and debugging was painful

and time-consuming. By the late 1960s, a group of computer scientists led by Edsger Dijkstra

began to advocate for structuredprogramming in “high-level” languages like Fortran, ALGOL,

and C. These languages were more abstract than machine language and allowed programmers

to think more about themeaning of a program and how that meaning should be best expressed

www.cambridge.org/9781009260336
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-26033-6 — Data Structures and Algorithms in Java
Dan S. Myers
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 Algorithms+Data Structures = Programs

in code. Alongwith these ideas came an increased focus on the relationship between a program’s

code and the data that it operates on. The Swiss computer scientist Niklaus Wirth described it

like this (Wirth, 1976):

Programs, a�er all, are concrete formulations of abstract algorithms based on particular

representations and structures of data.

Data structures are important because they provide the basis on which the program’s

algorithm executes. This insight led to considerable research into the best ways to organize

information in programs, which by the 1980s had become a core part of the computer science

curriculum.

Why Do Data Structures and Algorithms Matter to Real-World
Programmers?

“That sounds interesting,” you may say, “but do I need to learn this material to be a highly paid

so�ware professional?” I’ll tell you the truth, reader: You don’t have to learn any of this stu� to be

a working so�ware developer. Even if you can get paid without reading this book, though, there

are still good reasons to spend time engaging with this material, whether you’re doing that in a

formal course or for self-study.

• Algorithms and data structures are foundational to all of programming. Foundational

knowledge, in any �eld, is important because it’s transferable. If you understand, for

example, how to use a data structure like a hash table,1 that knowledge can then be

applied to any language, framework, or problem. Mastering the material in this book

will make it easier for you to see the connections and patterns that reoccur over and over

again throughout computer science.

• Second, as your career advances, you’ll eventually encounter hard problems. The closer

you get to the cutting edge of the �eld – in areas like AI, scienti�c computing, or

programming language design – the less your success depends upon knowing a speci�c

language or tool and the more it depends on having strong core computer science skills.

• If you play sports, you’ve probably spent time in the gym li�ing weights or stretching as

preparation for training on the �eld. Athletes train muscles and movements that aren’t

part of their sport because they want to be strong and injury-free. In the same way,

knowing algorithms and data structures will help you avoid common design mistakes.

In particular, algorithm analysis will help you avoid wasting time from choosing bad,

ine�cient solutions that can’t scale.

• Finally, like a jazz musician building chops by practicing technical exercises and solos

by other musicians, working through the projects in this book will make you better at

programming and prepare you for larger projects.

1 Covered in Chapters 14–16.

www.cambridge.org/9781009260336
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-26033-6 — Data Structures and Algorithms in Java
Dan S. Myers
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Learning from This Book 5

Learning from This Book

If you’re using this book for a course, your instructor will provide you with a schedule of

suggested readings and assignments. If you’re a working programmer using it to teach yourself,

then you have more freedom to explore the material at your own pace. In either case, here are

some tips for getting the most out of this (or any) text.

Orient yourself. Read the introduction and section headings for a chapter and read the

learning goals in the introduction, which will give you an overview of the intended outcomes.

When you �nish a chapter, return and review its outcomes.

Focus on the problem. Data structures and algorithms exist to solve interesting problems.

When you’re learning a new technique, always ask yourself, “What applications bene�t from

this?”

Use active learning. Every chapter contains Try It Yourself sections integrated into the text

that allow you to think about the parts you’ve just read. When you encounter these, stop and

think about them. Don’t immediately move on to the solution without trying the question for a

few minutes. Read the example programs carefully and re�ect on how they work.

Implement the projects. The larger example projects are a key element of this book. If

you’re a relatively new Java programmer, they’ll show you how to use the language’s features

and develop your coding style and organization skills. Resist the temptation to simply copy the

project code and then run it – build the projects step by step and focus on the reasoning behind

each implementation.

Do the exercises but don’t get stuck. Each chapter ends with several exercises and extensions

you can try. These are helpful, but it isn’t necessary to do every one. Pick the ones that seem

interesting. I recommend doing most of the “Understand” questions, several of the “Apply”

questions, and at least a few of the more di�cult “Extend” questions. If you get stuck on a

question, give it a fair try then move on to something else. You’ll likely �nd that returning to

it later, a�er you have some more practice, will help you get unstuck. If you’re using this book

as part of a class, don’t be afraid to ask your professor or teaching assistants for help, even on

questions that aren’t assigned to you.2

Revisit and compare. As you work through each topic, think about how it relates to the

other topics you’ve already seen. For example, the early chapters of the book cover arrays and

lists, which are similar to each other, but used for di�erent applications. As you complete each

new topic, read back through the introduction and ending sections of earlier chapters and think

about how what you’ve just learned is similar to and di�erent from the earlier material. Doing

this will help you build a richer mental map of the important concepts and their relationships.

Try It Yourself

Think about your previous programming experience.What workedwell for youwhen you

were learning new concepts? What didn’t work well?

2 We like it when you do this.

www.cambridge.org/9781009260336
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-26033-6 — Data Structures and Algorithms in Java
Dan S. Myers
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 Algorithms+Data Structures = Programs

SUMMARY

This chapter has introduced our major theme: data structures and algorithms working together

to make programs possible. As you’re reading, consider the following points:

• There is o�en no “best” solution to a particular programming problem, but rather mul-

tiple solutions with their own trade-o�s. Understanding data structures and algorithm

analysis will help you evaluate these trade-o�s in an intelligent way.

• Even if you use higher-level libraries and frameworks, understanding the fundamentals

of computer science will improve your programming and help you learn.

• The concepts from this book are relevant to every area of computer science, including

programming language design, systems, AI, and networking.

We’ll start the next chapter with an introduction to Java.

EXERCISES

Understand

1. List three examples of algorithms that aren’t programming or cooking related.

2. Give an example of a procedure that isn’t an algorithm by our criteria.

3. Other than execution time, what are some qualities we might consider in determining

whether an algorithm is good or not?

4. Sorting data is an important problem and many sorting algorithms have been developed.

What is a real-world problem that requires sorting data?

5. Consider your previous programming experience. What data structures and algorithms

have you already studied?

6. Do some research on the di�erence between active and passive learning. What makes

learning active?

Apply

7. I wrote an algorithm that uses a random function to make a choice. Explain why the

program is still an algorithm, even if the output is not the same every time it runs.

8. I wrote another program that runs and terminates but doesn’t display any output or save

any results. Is that an algorithm?

9. Think about a classic 2D video game like Pac-Man. What data do you need to keep track

of for the di�erent elements on the screen? What about a modern 3D game?

10. Many languages support a basic data type for character strings. List some common

operations that you would expect to perform on character strings.

11. Explain why any program executing on a computer is automatically composed of concrete,

feasible steps. Tip: Think about what happens when a program runs. What is the CPU

actually doing?

www.cambridge.org/9781009260336
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-26033-6 — Data Structures and Algorithms in Java
Dan S. Myers
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Notes and Further Reading 7

12. Do some research on genealogies. What kind of data structure could you consider using

to model a person’s family history?

13. Do some research on social networks.What kind of data structuremight you use tomodel

the connections between users on a social media platform?

Extend

14. Bloom’s taxonomy is a model for structuring learning goals based on their complexity. It

arranges engagement with a topic into a hierarchy, where the lowest level is memorizing

basic facts and the highest is creating new original knowledge. Do some research on

Bloom’s taxonomy, then give an example of a question or project about algorithms that

�ts into each of its categories.

15. Do some research on di�cult problems. Identify and describe one problem forwhich there

is no known e�cient algorithm.

16. Look up the word “metacognition.” How does metacognition apply to learning?

17. Think about your own learning process in programming or another area. What lessons

have you learned about how you learn best?

NOTES AND FURTHER READING

The title of this chapter is a reference to Niklaus Wirth’s book, Algorithms + Data Structures

= Programs (Wirth, 1976). Wirth designed Pascal, one of the most important programming

languages of the 1970s and 1980s, and contributed to the development of object-oriented

programming with the Modula family of languages. The book was in�uential and widely used

in education. It contains a great overview of building a tiny compiler for a small Pascal-

like language. A�er you �nish this book, there are a number of other excellent resources

you can read. Cormen et al.’s Introduction to Algorithms is a classic upper-level book that

covers algorithm design, analysis, and advanced data structures (Cormen et al., 2022). Skiena’s

Algorithm Design Manual features a catalog of important problems and approaches for tackling

each one, alongwith a number of entertaining stories about his experience designing algorithms

for real-world problems (Skiena, 1998).

www.cambridge.org/9781009260336
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-26033-6 — Data Structures and Algorithms in Java
Dan S. Myers
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Java is a blue collar language. It’s not PhD thesis

material but a language for a job.

James Gosling

1
Java Fundamentals

INTRODUCTION

Java is one of the world’s most popular programming languages. Widely used in enterprise

so�ware development, Java’s strengths lie in its combination of performance and portability,

as well as its large, robust library of built-in features, which allow developers to create complex

applications entirely within the language. Java was developed in the early 1990s by a team from

SunMicrosystems led by JamesGosling. Initially calledOak (a�er a tree outsideGosling’s o�ce),

the new language was intended to be a development environment for interactive TV, but pivoted

to the emergingWorldWideWeb a�er its public release in 1995. Since then, Java has expanded

into almost every area of so�ware development. It is the default programming language for

Android mobile devices, the Hadoop large-scale data processing system, andMinecra�. Java is

one of the most well-known object-oriented programming languages.

This chapter surveys the core elements of Java programming, assuming some familiarity with

programming in any language. If you already have Java experience, it will be a refresher on

important points. If your experience is with Python, JavaScript, or other languages, this chapter

will help you understand how Java does things di�erently.

LEARNING OBJECTIVES

By the end of this chapter you’ll be able to

• Write programs using the core elements of Java: variables, types, conditionals, loops, and

methods.

• Use built-in classes from the standard library to represent text, read input, and do

calculations.

• Combine these features to implement simulation programs and historical cryptographic

algorithms.

The next chapter extends these fundamentals and focuses on object-oriented programming.

A�er completing both chapters, you’ll be well-prepared to move forward with the rest of the

book.

www.cambridge.org/9781009260336
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-26033-6 — Data Structures and Algorithms in Java
Dan S. Myers
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1 Hello, Java! 9

1.1 Hello, Java!

Let’s write some code! This section will show you how to write your �rst Java program.

1.1.1 The First Program

The traditional �rst program prints “Hello, World!” to the screen. This may seem trivial, but

simply coding and running this program veri�es that it’s possible to compile and run a valid

program that produces output. Copy the code below to a �le named HelloWorld.java in your

Java environment, run it, and verify that it produces the expected output.

1 // The first program: print a hello message

2

3 // All Java code is contained in a class

4 public class HelloWorld {

5

6 // Main is the entry point for the program

7 public static void main(String[] args) {

8

9 // Print a message to the standard output

10 System.out.println("Hello, World!");

11 }

12 }

Every Java program is enclosed in a class block. The class name is the name of the program,

and the name of the class must match the name of the .java �le that contains it. This class

is named HelloWorld, so it must be in a �le named HelloWorld.java. By convention, class

names always start with an uppercase letter. Multi-word names are created by capitalizing each

word. The top of the program also illustrates Java’s basic comment: Two forward slashes tells the

compiler to ignore everything on the same line. Java also supportsmultiline comments; we’ll see

an example shortly.

Every Java application must contain one method called main, which is the entry point for the

program. When HelloWorld executes, it begins at the �rst line of main. Java is more verbose

than Python, and programming the main method requires chanting an invocation to the Java

verbosity gods. That invocation is:

public static void main(String[] args)

The signature for main must contain all of these keywords. For now, don’t worry about the

meaning of public, static, and void – we’ll come to them soon.1 The main method always

takes one input argument, a String[] called args, used to pass command-line arguments into

1 void will be discussed in Section 1.6; public and static will be covered in Chapter 2.

www.cambridge.org/9781009260336
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-26033-6 — Data Structures and Algorithms in Java
Dan S. Myers
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 Java Fundamentals

the program.2 Note that args is required even if the program doesn’t use any command-line

arguments.

Like its C/C++ ancestors, Java uses curly braces tomark blocks of code.We prefer to place the

le� curly brace on the same line as the block declaration, but other style guides place it on the

next line (Google, 2022a). Whitespace is not syntactically signi�cant in Java – unlike Python,

Java does not require spacing to indicate the structure of your program – but you should always

indent each new block to show the logical structure of the program.

The basic printing method is System.out.println, which outputs a string to the terminal

and then moves to the next line. The input is a text string, denoted using double quotes; Java

does not allow single-quoted strings.

System.out.println("Hello, World!");

Every Java statement is terminated by a semicolon. System is a special built-in Java object that

provides access to the computer’s operating system and lower-level utility methods. Every Java

program automatically has access to System and its methods. Notice that System starts with a

capital S, which is required.

Try It Yourself

• Write a new program called Haiku.java that contains a class called Haiku. Use three

print statements to output this haiku by the poet Kobayashi Issa, famous for his poems

about insects and small creatures:

little snail,

inch by inch –

climb Mount Fuji!

• Java’s printing supports the standard set of special characters: \n for a newline, \t

for a tab, \" for a literal double quote within a string, and \\ for a literal backslash.

Use multiple print statements and \" to print this version of The Raven as a limerick

(Doctorow, 2007). Put your program in a �le named Raven.java in a class named

Raven.

There once was a girl named Lenore,

And a bird, and a bust, and a door,

And a guy with depression,

And a whole lot of questions,

And the bird always says, “Nevermore.”

2 Programs that run in a Linux shell may get inputs this way.

www.cambridge.org/9781009260336
www.cambridge.org

