
Cambridge University Press & Assessment
978-1-009-25808-1 — A Complex Systems Approach to Epilepsy
Edited by Rod C. Scott, J. Matthew Mahoney 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Chapter

1
Introduction
Rod C. Scott and J. MatthewMahoney

This book takes a view of the brain as a complex
adaptive system and seeks to identify mechanisms
underlying the clinical outcomes as well as
the therapeutic opportunities for epilepsy using
this framework.

Complex systems theory is a nebulous field
whose overarching goal is to understand the
dynamical behavior of systems consisting of many
interconnected component parts. It has attracted
widespread interest frommany domains that study
examples of such systems, including ecologists,
sociologists, engineers, artificial intelligence
researchers, condensed matter physicists, neuro-
scientists, and many others. The results of these
collected, multi-disciplinary efforts have not been
so much a comprehensive theory of Complex
Systems (capital-C, capital-S), but rather a set of
techniques, analogies, and attitudes toward prob-
lem solving that emphasize interactions and
dynamics over individual components and their
functions. The chapters are written in a complex
adaptive systems frame and therefore it is useful to
provide a provisional theoretical description of
such systems. Following Holland [1], a generaliz-
able description of complex adaptive systems is
that they are collections of relatively simple agents
that have the property that they can aggregate,
so that collections of agents can form meta-agents
(and meta-meta-agents etc.) with higher-order
structure. These aggregates interact nonlinearly,
so that the aggregate behavior of a collection of
agents is qualitatively different from the behavior
of the individual agents. The interactions among
agents mediate flows of materials or information.
Finally, the agents are typically diverse with dis-
tinct specialties that are optimized through adap-
tation to selective pressures in their environments.

To manifest these properties, complex adaptive
systems havemechanisms that underpin the forma-
tion and function of the whole system. In full gen-
erality, these mechanisms may seem unnecessarily

abstract or obscure for application to a specific
system, like the neural circuits of the brain.
Nevertheless, the abstraction is precisely what
accounts for the cross-disciplinarity of complex
systems theory, and the applicability of its
approaches across biological length scales from
subcellular structures to whole brains. The first
mechanism is tagging, which allows diverse agents
in the system to signal their identities to other
agents thus enabling complex self-organization into
aggregates. The second mechanism is the ability to
generate internal models that approximate and
anticipate the world external to the system, which
enables adaptive behavior by the aggregate system.

From the above description, brains are clearly
complex adaptive systems par excellence. There are
several hierarchical layers of agents. A diversity of
genes aggregates into gene networks that form a
diversity of proteins that aggregate from a diversity
of cells (e.g., neurons and glia) that aggregate and
form a diversity of brain regions that aggregate and
form the brain with a diversity of emergent phe-
nomena. Indeed, individual cells themselves are
complex adaptive systems, where biomolecules as
agents interact through electrostatic fields gener-
ated by patterns of charges (tags) that facilitate
aggregation into complexes and structures. These
structures implicitly compute models of the world
outside the cell and generate an appropriate tran-
scriptional response. For example, the presence of a
phosphorylated signaling molecule inside a cell
carries information about the concentration of par-
ticular ligands outside the cell. This organization is
approximately repeated at the level of neural net-
works. Neurons as agents use a variety of biochem-
ical and electrical cues (tags) to form into circuits
that mediate the flow of sensory information into
motor output, memory etc., through massively
parallel nonlinear dynamics. These dynamics
implicitly compute internal models of the external
world to generate adaptive behavioral responses. 1
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The brain is one of the guiding metaphors
of complex systems science, so that other
examples – economies, ecological systems, social
networks, transportation networks – are often con-
ceptualized as “brain-like” in one way or another
within complex systems theory. However, these
other systems repay the favor and invite tantalizing
metaphors of their own. For example, the syn-
chronous blinking of fireflies has long fascinated
mathematical biologists [2]. In this system, non-
linear interactions among blinking fireflies causes
a spontaneous synchronized blinking that spans a
whole swarm. Intriguingly, a lone firefly does not
even display periodic blinking, so the drive to
synchronous blinking is fully mediated by the net-
work of interactions. In the 1990s, as mathematical
tools and computer simulations began to clarify
these dynamics, the potential connection to syn-
chronous brain activity, and specifically epilepsy,
began to be seriously considered [3]. One of the
major discoveries in complex systems theory over
the last few decades was the “small-world” phe-
nomenon in many real-world networks [4]. Small-
world networks have the property that most nodes
are not directly connected to each other, but never-
theless most pairs of nodes can be connected by
short paths. In their seminal paper on small-world
networks, Watts and Strogatz showed that the syn-
chronizability of a network is highly sensitive to
the structure of connections – the topology – of the
network, where small-world networks synchronize
more readily than other patterns of connections,
and they speculated that this may underlie the
synchronizability of physically distant pairs of
neurons in the visual cortex. There has since been
a wealth of research on small-world and other
topological properties of many kinds of brain net-
works in health and disease (see, for example,
Chapters 9 and 10). It is interesting from the
“complex systems perspective” that the early lumi-
naries in the mathematics of synchronization were
inspired as much by brains as by firefly swarms.

The example of synchronizing fireflies high-
lights a dictum in complex systems coined by the
physicist Philip Anderson in the title of a classic
essay “More is Different” [5]. The essential point of
that essay, beyond the particular physical examples
given, is that aggregates of many things can have
qualitatively distinct collective behavior from any
of the parts (whole brains do not behave like big
neurons). For the fireflies, a network of interact-
ing, asynchronous fireflies becomes a wave of

synchronous blinking over length scales many
orders of magnitude larger than an individual fire-
fly blinking. This emergence of new phenomena
has achieved highly refined mathematical descrip-
tion in condensed matter physics, but has echoes
across many disciplines, and forms an organizing
metaphor in complex systems thinking [6–8].

But how can we put these ideas to work in
understanding clinical phenomena and designing
new treatments for epilepsy? Said more stridently,
what is the added value of taking this abstract,
complicated, and potentially sterile perspective?
Or more sympathetically, how does complex
systems theory help us understand clinical vari-
ability and design new interventions in the brain
to produce desired outcomes?

An interesting observation among genetic epi-
lepsies is that mutations in a single gene can result
in vastly different phenotypes. Specific examples
include variability in outcomes in tuberous scler-
osis even within single families [9], and the wide
clinical variability associated with sodium channel
mutations [10]. Given that patients with identical
mutations can have outcomes ranging from cog-
nitively normal and medically tractable epilepsy
to developmental delay, intellectual disability, and
intractable epilepsy, within a complex systems
framework it is clear that the individually variable
adaptation of the whole brain system to the same
genetic perturbation is a critical driver of out-
comes. Understanding the nature of the adapted
network that predicts good vs. poor outcomes will
provide extremely important pathophysiological
information that cannot be inferred from the
mutation per se. The same ideas can be applied
to acquired epilepsies. For example, the variability
of outcomes following traumatic brain injury [11]
is partly a function of the injury itself but also a
function of network adaptation that is likely to be
influenced by the nature of the individual pre-
injury networks.

In terms of treatment, a few analogies help
emphasize the perils of ignoring complexity and
the promise of embracing it. The networks in
which humans intervene most deliberately and
totally are traffic networks. The purpose of any
traffic network is to facilitate the efficient transfer
of people and goods in space. All else being equal,
we would expect that adding more roads to a net-
work would necessarily add efficiency – there is
more room for cars to drive, more possible paths
from point A to point B. Alas, this is not so, as
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described in what is now known as Braess’ “para-
dox.” This classic argument shows that adding
roads (under reasonable assumptions about driver
behavior) can cause the overall traffic within the
network to slow down. Conversely, there have been
several real-world examples in which a temporary
shutdown of major roads in cities has actually
improved traffic flow [12]. The key point is that
the overall traffic flow is a function of the whole
network’s topology. Thus, local heuristics, like
“adding an expressway between two popular points
will improve traffic flow,” can have highly counter-
intuitive, negative consequences. A “toy” example
of this effect can be seen in the ancient Hindu game
Snakes and Ladders, where the addition of some
ladders can lengthen the expected game length,
while the strategic addition of snakes can actually
shorten the expected length [13].

Now let us operationalize this analogy for epi-
lepsy. Instead of cars on roads, the brain transports
information along connectomes. Among the
major therapeutic decisions in epilepsy is the stra-
tegic resection of some brain tissue or, more
recently, the implantation of a neurostimulator
device. However, if we take the traffic network
analogies seriously, wemust accept that local heur-
istics can lead us badly awry. If the emergent
dynamics of the brain are determined by the whole
connectome, then we must treat the whole con-
nectome. Like adding or shutting down roads in a
city center, adding or removing electrical pathways
in the brain can have potent positive effects on
whole brain function, but only if the rest of the
brain is considered. Advances in imaging, machine
learning, and dynamical modeling are facilitating
such a holistic view, where virtual surgeries can be
used to predict outcomes based on patient-specific
network data (see Chapter 4).

Considering drug interventions, we can again
consult far flungmetaphors. The purpose of a drug
in epilepsy is to suppress seizures. Medications do
not directly influence the emergent phenomenon
of seizures, but rather interact with a set of target
molecules within cells and tissues in the body.
In response, cells change their physiology, ideally
toward a non-seizure-prone state. As is well
known, however, the fraction of patients who are
seizure free on any medication has remained stuck
at around two-thirds for decades [14], and existing
medications can have debilitating side effects, par-
ticularly when multiple treatments are prescribed
simultaneously. The ability to predict what kinds of

novel molecules will interact in just the right
ways to normalize and stabilize the ceaseless
molecular activity of the brain to prevent seizures
is a goal of therapy development in a complex
systems framework.

This problem is at least as hard as intervening
in an ecosystem to normalize and stabilize popu-
lation dynamics. Analogous to molecules within
cells, organisms in ecosystems have diverse
interactions forming a trophic network defining
energy and material flows. There is an ignoble
history of abject failures and a few instructive
successes of human intervention into ecological
systems. Canonical among the failures is the
introduction of cane toads to Australia to control
cane beetles; a strategy that had broad scientific
consensus at the time. Not only did the toads fail
to control cane beetles, they also destabilized the
native ecosystem, endangering several species that
did not coevolve with them [15]. In contrast, the
reintroduction of wolves to Yellowstone National
Park in the United States was successful beyond
expectations [16]. Unlike the cane toads, the
Yellowstone ecosystem evolved with wolves as an
apex predator, who were extirpated by human
activities. The reintroduced wolves had a number
of salutary effects. Principally, as apex predators,
they induced significant changes in behavior in
their main prey species, elk, who no longer ven-
tured out into the open to graze exclusively on the
most desirable plants. This change in behavior
had the downstream effect of allowing multiple
plant populations to recover from overgrazing,
which in turn allowed their roots to stabilize the
soil, which arrested the erosion that was causing
rivers to change course and further disrupt other
niches. Furthermore, the availability of elk car-
casses helped restore other scavenger species.
Overall, biodiversity and population stability are
both markedly improved.

The critical point to take away from the toads
versus the wolves is that the wolves succeeded and
the toads failed because of where they each sat
within the trophic network. The wolves had an
evolved function and a critical topological location
within the trophic network as the apex predator.
In contrast, the toads were speculatively intro-
duced as a totally new node within a network.
Importantly, both interventions had the proximal
goal of controlling a target species (elk for the
wolves, beetles for the toads), but it was network
effects that determined success. In epilepsy terms,
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these examples ask us to think deeply about how
and why we choose molecular targets for anti-
seizure drugs, and our strategies for targeting
them. It is interesting to speculate at this level of
generality whether we think any of our modern
anti-seizure medications are wolves or toads. Like
the traffic and ecological examples, the effects of
introducing a molecule depends in highly nontri-
vial ways on the dynamics of the whole network of
interactions. Systems biological approaches to
genetic risk prediction and drug discovery, there-
fore, treat molecular networks and their emergent
functions as fundamental, alongside individual
molecule-trait associations (see Chapters 2 and 3).

The foregoing discussion has briefly high-
lighted the character of complex systems theory

and sought preliminary connections to the main
topic of this book. We hope this inspires inter-
ested readers to seek out comprehensive treat-
ments of complex systems theory (as can be
found in [1,8,17]), and keep these analogies and
principles in mind as they go through the chap-
ters. Overall, we have chosen to organize the book
by physical scale within the brain, starting with
genes and ending on whole brains. It should be
stressed, however, that each chapter is a self-
contained treatment of a topic. Each chapter in
its own way, and to the extent possible for each
data domain within neuroscience, discusses the
promise of networked, dynamical thinking for
epilepsy research and practice.
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Chapter

2
Systems Biology Approaches to the
Genetic Complexity of Epilepsy
Jeffrey L. Brabec, Montana Kay Lara, Anna L. Tyler,
and J. MatthewMahoney

2.1 The Epilepsy Genetic Revolution

The genetic underpinnings of epilepsy have come
into much clearer focus over the past two decades.
Advances in high-throughput molecular tech-
niques have markedly improved our ability to
identify potential therapeutic targets in epilepsy.
Many of the monogenic effects identified through
these methods have resulted in effective thera-
peutic targets for seizure amelioration [1,2,3].
Currently, around 200 definitively annotated epi-
lepsy genes causing a range of seizure disorders
and phenotypes have been identified [4]. Many
more genes with putative associations with epi-
lepsy pathways require further study [5]. The
expansion of known genetic mechanisms and risk
factors presents us with several benefits, including
an increased pool of possible drug targets [6],
genetic subtyping of seizure disorders [7], and
the possibility for integrative analysis across dif-
ferent disorders [8,9]. However, the increasingly
rich collection of genetic associations has also
revealed the complexity of seizure disorders.
Many mutations in different genes can converge
on a similar clinical presentation [10], while dif-
ferent mutations in the same gene can have radic-
ally divergent outcomes [11,12]. Moreover, while
robust data from twin and family studies demon-
strate that common epilepsies are highly heritable
[13,14], association studies have only detected risk
factors that account for a small fraction of risk
[15]. Thus, the data on epilepsy suggests a dichot-
omy. On one side, genetics is critical for describ-
ing etiology [16]. On the other side, using this
information for prognosis or therapeutic develop-
ment is limited by our current understanding of
the complex genetic underpinnings of the disease
and our analytic tools [10,17]. As a response to
this complexity, researchers have started to shift
toward complex systems approaches to genetics,
which changes the focus from individual muta-
tions to interactions among many mutations. The

purpose of this chapter is to elaborate this ethos
and present examples of this approach.

It is important to stress that genetic associations
in epilepsy come from two essentially distinct
sources. One source is rare variant detection via
whole-exome or whole-genome sequencing. In
these studies, a patient’s and family members’
DNA is sequenced to identify putatively deleterious
rare mutations [18]. These studies are typically
undertaken in patients with epileptic encephalopa-
thies for which no known genetic etiology is
implicated. The other source of associations are
genome-wide association studies (GWAS), in
which large populations of cases and controls are
genotyped at a set of common genetic variants,
which are then statistically associated with disease
status. The GWAS approach is used for common
epilepsies such as temporal lobe epilepsy (TLE) and
idiopathic generalized epilepsies (IGE). As will be
discussed in the next section, these two approaches
typically fall on two ends of a spectrum, on one
end of which reside the monogenic disorders that
are caused by mutation of a single gene and on the
other end the polygenic disorders that arise
through the combined effects of many genes.

The International League Against Epilepsy
(ILAE) recently published a GWAS “mega-analysis”
for several common epilepsies, including focal and
generalized epilepsies [15]. Their analysis revealed
11 novel loci associated with common epilepsies,
which implicated diverse biological mechanisms
across epilepsy subtypes. Despite the statistical sig-
nificance of these associations, the risk conferred by
the newly associated variants was low (1.5–3.3 odds
ratios). This is typical of GWAS for many complex
diseases, and not a feature of epilepsy GWAS per se
[19,20]. For monogenic epilepsies, there have been
concerted bioinformatic efforts to collate rare vari-
ant data into searchable public databases. Resources
such as the Online Mendelian Inheritance in Man
(OMIM) database [21] collect validated mutations,
while research databases such asClinVar [22] enable
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investigators to share variants of unknown signifi-
cance detected in their patients alongside corres-
ponding clinical presentations.

Despite this wealth of publicly available infor-
mation, we are still far from precisionmedicine for
patients with epilepsy. Indeed, few new therapies
have been developed for specific genetic targets.
A notable exception is Everolimus, which targets
overactivation of mTOR signaling caused by
mutations in the mTOR pathway. Unfortunately,
Everolimus has only modest effects on epilepsy
symptoms and does not appear to be more effica-
cious than other, nontargeted anti-seizure drugs at
controlling seizures [23]. Why has the genetic
revolution not resulted in a treatment revolution?
To begin to answer this question, it helps to take a
theoretical perspective and survey the genetic
architecture of complex traits.

2.2 The Genetic Architecture
of Complex Traits
The goal of genetic analysis is to identify a math-
ematical function that predicts an individual’s
phenotype from their genotype: a genotype–
phenotype map. A phenotype can be a quantitative
measure, such as body mass index, or a discrete
category, such as disease status. In the latter case,
which is most common for GWAS, the genotype–
phenotype map predicts a risk for belonging to a
given category. Assuming such a function can be
found, it would appear to accomplish multiple
objectives simultaneously. First, it would allow
rigorous prediction of an individual’s phenotype.
Second, it would establish the individual contribu-
tions of genetic variants to overall risk. This latter
property, more than just quantifying risk, should
aid in developing a mechanistic understanding of
the disease. The idea of precision medicine is
predicated, in part, on using such predictive
models for prognosis and treatment selection
[24]. Of course, how predictive the genome is for
a given trait and just what mathematical form a
genotype–phenotypemap should take are nuanced
questions that require careful consideration.

The space of all possible genotype–phenotype
maps is truly vast. Across the human population,
the number of genetic variants in the genome is so
large – and our sample sizes so minuscule by
comparison – that we must be guided by theoret-
ical considerations and be willing to accept rea-
sonable approximations to make any headway.

There are on the order of 107 single nucleotide
polymorphisms (SNPs; i.e., common point muta-
tions) in the human population. This is in add-
ition to insertion-deletions (indels), structural
variants, such as copy number variations, and
so-called rare variants, which can be point muta-
tions or larger structural variants [25–27].
A genotype–phenotype map would therefore
include the effects of tens of millions of variables
and all their possible interactions to predict a
trait. To get a feel for the magnitude of combina-
torial possibilities, note that for 10 million SNPs
there are on the order of 100 trillion pairs of
SNPs, to say nothing of higher-order interactions.
This is colloquially known as combinatorial
explosion. (To make a scale comparison, the
number of possible SNP pairs is greater than the
number of stars in the Milky Way.) To make
matters yet more complicated, many genetic
factors only become relevant through interactions
with specific environments, such as an in utero
exposure, so a generic genotype–phenotype map
also requires terms for all possible interactions
among genetic variants and variables representing
environmental factors [28].

The above considerations paint a dire picture
of our ability to estimate a genotype–phenotype
map in general. Fortunately, the situation is not
nearly so bleak in practice. For most diseases, we
typically assume that only a tiny fraction of the
putative predictors (e.g., SNPs) are in fact predict-
ive. Thus, using an association study design we
can statistically screen for a small number of
relatively strong effects for further consideration.
The association studies discussed in the previous
section fit this pattern and have made significant
advances in identifying genetic risk factors for
common epilepsies.

It is worth noting, however, that the existence
of a small number of relatively strong effects is
not a biological imperative and is, in fact, quite
rare for common diseases [25–27]. In principle,
the variants influencing a trait could be diffuse
throughout the genome, where a large number of
extremely weak effects conspire to produce a
given phenotype. Indeed, this was the model
Ronald Fisher had in mind when developing the
early tools of statistical genetics [29–31]. In that
model, developed decades before the discovery of
DNA as a store of heritable variation, Fisher con-
ceptualized an infinite number of genes (oper-
ationally defined as units of inherence), each
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making an infinitesimal contribution to the over-
all trait. Fisher was motivated, in part, by the
observation that many heritable traits are nor-
mally distributed, i.e., have bell curve distribu-
tions, which follows naturally from a theoretical
analysis of his infinitesimal model. Fisher’s model
has had a strong influence on many fields of
genetics, including selective breeding and evolu-
tionary and population genetics [32], and has
received modern resonance in Boyle et al.’s con-
cept of omnigenic inheritance. In the omnigenic
model, essentially every gene contributes to every
phenotype [33].

Paradigmatic among polygenic traits is height.
Height is highly heritable – you are roughly as tall
as your parents – but there is far from only one
“height gene.” On the contrary, the most recent
meta-analysis of height has identified tens of
thousands of SNPs that significantly influence
height, but each contributes only a tiny fraction
of a millimeter one way or the other [34]. One’s
height is largely determined by the complement of
these tiny nudges inherited from one’s parents.
For any phenotype of interest, however, the ques-
tion of whether a small number of strong effects, a
large number of weak effects, or some heteroge-
neous combination of both, is a question that will
need to be resolved with experiments. The answer
to this question is often referred to as the genetic
architecture of the trait.

In the present case of epilepsy genetics, we see a
spectrum of genetic architectures. In rare, sporadic
epileptic encephalopathies, exome sequencing has
revealed a relatively simple architecture of a small
number of large effects [35]. (Note that the simpli-
city of the architecture does not imply the simpli-
city of identifying these effects!) In contrast, many
common seizure disorders, e.g., TLE and IGE, are
expected to have the latter kind of inheritance [36].
This has significant ramifications for how to iden-
tify and, more importantly, how to use genetic
associations that arise from association studies.
We will discuss strategies for coping with this
genetic complexity in the next section.

Before discussing how to approach genetic
complexity, it is worth asking why individual gen-
etic effects are often so weak. Part of the answer is
that in GWAS the associations are made to SNPs,
which are by definition common variants. No SNP
with minor allele frequency of, say, 20% can be a
complete causal explanation of a disease that
afflicts at most a few percent of the population.

At best, SNPs can reveal modifiers of an under-
lying pathology that alter disease risk. This is
reflected in the odds ratios for disease risk for
individuals SNPs, which are often in the range of
2 to 10. Alternatively, there could be cryptic causal
variants that are not SNPs but are correlated with
them (known as linkage disequilibrium). Finding a
preponderance of SNP associations at some loca-
tion, each with weak individual effects, can often
signal the presence of a hidden strong variant.
Thus, SNPs are a blunt instrument. However, this
is unlikely to be the whole answer. Consider tuber-
ous sclerosis complex (TSC), which is caused by
loss-of-function mutations in either the TSC1 or
the TSC2 genes. Despite the proximate cause of
TSC being such a mutation, TSC is still highly
heterogeneous. Indeed, even siblings who inherit
identical mutations and have essentially identical
environments can have markedly different out-
comes [37]. While such case reports cannot rule
out unmeasured environmental insults or rare
mutations as second genetic hits, they do suggest
hypothetical genetic modifiers of disease outcomes
that interact with the primary mutation to push
outcomes one way or another. This latter hypoth-
esis implicates network-level effects even in puta-
tively monogenic disorders, and all the more so in
complex traits.

No gene operates in isolation. Indeed, genes are
regulated by interconnected transcriptional net-
works and their products take part in overlapping
signaling cascades and binding interactions
[38–40]. There have been multiple attempts to
organize our models of molecular networks that
have variously emphasized the computational
aspects, the physical interactions, and the circuit-
like aspects of molecular systems (Fig. 2.1). In the
1990s, Denis Bray showed that the basic enzyme
kinetics equations of signaling cascades in c ells are
formally mathematically equivalent to multilayer
perceptrons, a form of artificial neural network
[41] (Fig. 2.1A). He posited that cells are biologic-
ally instantiated classification devices for trans-
forming external stimuli into transcriptional
responses [42]. Multilayer perceptrons have sev-
eral appealing properties as computational archi-
tectures. They can implement highly nonlinear
input–out relationships. Thus, signaling cascades
in cells can make complex calculations on stimuli
and respond with a vast repertoire of responses.
Furthermore, multilayer perceptrons have a
“graceful degradation” property that corrupted
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networks have decreased performance in propor-
tion to the amount of corruption, rather than
catastrophic failure after a few components are
removed [43]. This computational view hypothe-
sized that it is the computational capabilities of
cells that are positively selected by evolution, and
these systems have converged on networks that are
robust to mutations. Therefore, the convoluted
interconnectivity of molecular networks appears
as a property that mitigates the effects of individual
mutations. Thus, the complex organization of sig-
naling pathways is not a “bug” due to historical
contingencies of evolution, but an essential “fea-
ture” of the computational architecture of cells.

Network-theoretic investigations have estab-
lished that biological networks are indeed largely
robust to random perturbations. For example,
Barabási and collaborators have argued that
protein–protein interaction networks, i.e., net-
works of physical binding between proteins, have
evolved into so-called scale-free topologies that
are robust to random mutations that knock out
a random protein [44]. This interaction view
abstracts away from the complexity of the dynam-
ics of molecular systems and emphasizes the top-
ology of those interactions. The scale-free
network concept of Barabási & Albert has come

under significant scrutiny [45]. However, the gen-
eral point that protein–protein interaction net-
works have highly nonrandom structure that
makes them robust to randomly deleting a node
appears sound [46] (Fig. 2.1B). Likewise, Alon
and collaborators have identified network motifs
in transcriptional regulation networks, which
confer robustness to transcription as a function
of biophysical parameters that could be altered by
mutations (Fig. 2.1C) [39,47]. In this circuit view,
the complex interactions and dynamics of
molecular systems can be approximately decom-
posed into subsystems, each themselves nonlinear
components, that perform functions that are
robust to perturbations of their parameters.

Through collecting these insights, a provi-
sional explanation of the polygenic nature of
many traits takes form. Common mutations pro-
vide small perturbations to the function of one
component or interaction in a system, for
example, the efficacy of a signaling protein
(Fig. 2.1A), the binding affinity of a protein to a
partner (Fig. 2.1B), or of a transcription factor to
the binding site of another transcription factor
(Fig. 2.1C). Network robustness attenuates the
effect of these perturbations to maintain overall
function. The tortuous path from any mutation to

Input

Membrane

Nucleus

Output

Computational View

Variant

Variant

Interaction View

Variant

Circuit View

A) B) C)

Motif

Figure 2.1 Schematic of network views common in systems biology. The mathematical language of networks is a useful
tool in systems biology to capture the organization of molecular systems. A) An early view in systems biology was the computational
view that used ideas from machine learning to analogize cell signaling interactions as a multilayer perceptron, which is a form of
artificial neural network. In this view, the concentrations of molecules outside the cells are input and the transcriptional response is
output. The signaling cascade itself instantiates a nonlinear relationship between input and output. B) As high-throughput data
on molecular interactions, such as protein–protein interactions, became available, a purely topological interaction view became
popular. In this view, one effectively ignores the dynamics of the system and studies the patterns of interactions and correlates
them to other molecular properties, such as the effects of mutations. C) A circuit view of a molecular network attempts to decompose
a topologically complex network into commonly repeated subunits, called motifs. The dynamics of motifs in isolation can
provide some insight into how those motifs function within the full system. In each view, the effect of a genetic variant is to alter an
interaction in the system, e.g., by altering the strength of a binding interaction.
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an observable phenotype is mediated through
hundreds/thousands/millions of molecular inter-
actions, many of which have been perturbed by
other mutations, each contributing additional
variance to the subpopulation carrying the first
mutation. Hence, at the population level, most
variants have a small effect.

So far, we have only considered the effect of
one variant at a time within an association-
analysis framework. This ignores the putative
interaction terms described in the generic
genotype–phenotype map. Given the preceding
discussion of networks and interacting mutations,
it seems reasonable to model these interactions.
Statistical interactions among variants, i.e., devi-
ation from additivity in a linear model, is called
statistical epistasis [48,49]. Epistasis has a long
history in genetics going back to Sewall Wright
[50]. The existence of significant statistical epis-
tasis in human populations is an ongoing point of
controversy. Some argue that epistasis is both
statistically detectable with reasonable sample
sizes (despite the combinatorial explosion of the
number of interactions) and identifies biologically
relevant networks [51–54]. Others argue from
theoretical evolutionary genetics models and
empirical considerations that nearly all
population-level genetic variance in humans is
captured by additive models, despite the under-
lying nonlinear molecular interactions among
gene products [55,56]. In model systems, where
experimental crosses between evolutionarily
diverged lines are possible, epistasis is not contro-
versial. It has been observed in multiple model
species that epistasis is particularly important for
predicting extreme phenotypes [52,54,57], indi-
cating the potential relevance of epistasis for pre-
dicting individual disease risk. With these caveats,
the present authors are sympathetic to epistasis
analysis in general and look to promising compu-
tational [58,59] and theoretical [60,61] advances
that will potentially make epistasis modeling
impactful for epilepsy GWAS.

2.3 Overcoming Genetic Complexity
for New Insights
The discussion in Section 2.2 argued that it may
be impossible to completely enumerate all genetic
risk factors for epilepsy. Despite heritability, some
amount of risk may be so diffusely embedded in
molecular networks that we will never observe it

in association analyses. This does not prevent our
ability to make progress, but it does require that
we modify our approach. In the following
sections, we describe examples of approaches that
confront this complexity directly.

2.3.1 Genetics of Gene Expression
Networks: The Case of SESN3
One straightforward solution to the inadequacy of
GWAS data to resolve all risk genes is to augment
the genetic data with additional information. The
most obvious choice is gene expression data,
which provides a functional readout of the
genome and can be measured in tissue from
patients who undergo epilepsy surgery. Just as
“omics” approaches, which study high-
throughput cross-sections of molecular systems,
are called systems biology, the combined analysis
of genetics and gene expression is called systems
genetics. Recently, Johnson et al. performed a
systems genetic analysis of TLE [62]. Starting with
gene expression data from resected hippocampal
tissue from patients with TLE, they modeled gene
co-expression using a gaussian graphical model,
which captures the partial correlations among all
gene pairs to estimate direct gene interactions.
This allowed them to build a hippocampus-
specific gene interaction network whose structure
encodes the pathways that connect genes to each
other. To ascertain whether this network was dir-
ectly linked to underlying genetic risk for TLE,
they performed a de novo analysis of TLE GWAS
data and used a relatively liberal false discovery
rate-based correction for multiple hypothesis
testing. Within their hippocampus network, they
identified two gene expression modules that were
highly enriched for TLE GWAS risk genes. Each
module was then run through pathway analysis to
identify significantly enriched pathways. By
accepting a certain amount of statistical noise in
the gene associations, they were able to get a
robust pathway-level signal for TLE risk genes.

One of the modules was highly enriched for
pro-inflammatory cytokine signaling that was
conserved across humans and mice. The expres-
sion of the genes in this module, therefore, repre-
sents an endophenotype for TLE risk, i.e., an
intermediate phenotype with a clearer connection
to genetics [63]. They then used the module
expression as a phenotype for genetic mapping
and identified one significant genomic locus
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altering module expression. Through gene priori-
tization of the candidates within the locus, they
were able to identify and validate the gene SESN3
as a novel regulator of a proconvulsant gene net-
work. Interestingly, SESN3 was not present in the
original module, suggesting that SESN3 is a trans-
acting regulator of expression.

The study by Johnson et al. highlights several
key features of systems genetics analysis [62]. First,
there is always a tension between false positives and
false negatives in any high-throughput screen such
as GWAS or transcriptomics. In this study, rather
than requiring stringent evidence in each layer of
data, evidence accumulated across multiple layers,
ultimately implicating a novel gene that would have
beenmissed by stringent statistical criteria. Second,
by treating gene expression as a network phenom-
enon, they were able to resolve biologically specific
co-expression modules, one of which was suffi-
ciently genetically regulated to enable novel gene
discovery. Third, the use of gene expression as an
endophenotype is a powerful approach to resolving
the complexity of genotype–phenotypemaps. Gene
expression more closely reflects the underlying
genetic sequence than a subject-level outcome.

In follow-up work, Delahaye-Duriez et al. fur-
ther elaborated the convergence of genes for rare
and common epilepsies on shared functional net-
works [10]. Similarly, Johnson et al. showed that
cognitive and neurodevelopmental disorders also
share common genetic networks [64]. These stud-
ies suggest that, despite overt differences in genetic
architecture and clinical presentation, there is some
mechanistic convergence underlying epilepsy and
comorbidities, and regulators of these networks,
such as SESN3, can be identified through systems
genetics and therapeutically targeted to improve
outcomes.

2.3.2 Augmenting Statistical Genetics
with Functional Networks
The empirical finding that genetic risk alleles for
epilepsy are enriched in specific gene networks
opens the possibility that we could search for
those functional gene networks directly. In the
systems biology field, several tools have been
developed to combine genomic data with bioin-
formatic gene interaction networks to rigorously
circumscribe disease gene networks [65–70]. For
example, the Network-wide Association Study
(NetWAS) tool uses GWAS summary statistics

to identify tissue-specific disease gene networks
that are enriched for risk alleles. In the original
article on NetWAS, Greene et al. used NetWAS to
reprioritize genes from a hypertension GWAS
study using a blood vessel tissue-specific func-
tional gene interaction network [68]. The top
genes from their model were localized to an IL-
1β inflammatory response network, a known dis-
ease pathway in hypertension. Moreover, the
network-based gene rankings dramatically out-
performed GWAS summary statistics at identify-
ing drug targets for antihypertensive medications.
Importantly, NetWAS and similar tools are
designed to work with liberal statistical cutoffs
for GWAS associations, using bioinformatic prior
knowledge to “de-noise” the underlying signal. In
their proof of concept on hypertension, Greene
et al. were able to show that the network-based
signals for hypertension were indeed highly
enriched for biologically actionable information,
including drug targets, despite using liberal
GWAS cutoffs for gene associations.

Since the original publication, NetWAS has
been cited 508 times, and applied to numerous
complex diseases. While it has not yet been used
for epilepsy, it has been applied to several neuro-
logical disorders, including Alzheimer’s disease
(AD) [71]. The present authors used a NetWAS-
like approach to identify genes involved with
amygdalar and hippocampal atrophy in AD, impli-
cating genes involved in actin regulation whose
dysfunction leads to the collapse of the tripartite
synapse and excitotoxic neuron death [72]. Chang
et al. applied similar network techniques to rank
genes for association to schizophrenia, another
heterogeneous and genetically complex neuro-
logical disorder [73]. Additionally, Krishnan et al.
functionally characterized genes in autism spec-
trum disorder using network-based methods [74].
While AD, autism, schizophrenia, and hyperten-
sion are each biologically distinct, and different
from epilepsy, they share many similar features in
their genetic architecture. Bioinformatic network-
based techniques are a promising avenue for
detecting epilepsy risk gene pathways from faint
genome-wide signals.

2.3.3 Model System Studies of Risk
Factors and Modifiers
While genetic complexity is a hindrance to statis-
tics in observational studies like GWAS, we can
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