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Chapter 1

Preliminaries

1.1 Review of Linear Algebra

Linear algebra is primarily the study of finite dimensional vector spaces and linear

transformations between them. In a first course, one encounters the fact that every

such vector space has a basis, that linear transformations may be associated to

matrices, and one finally understands why matrix multiplication looks so clumsy.

This section sets out to relive those glory days.

1.1.1 DEFINITION A vector space over a field K is a set E together with two

operations a: E × E ³ E (vector addition) and s: K × E ³ E (scalar multiplication)

written as a(x, y) = x + y and s(α, x) = αx, which satisfy the following properties.

(a) (E,+) is an abelian group, whose identity is denoted by 0. If x * E, we write

(2x) for the inverse of x.

(b) If 1 * K denotes the multiplicative identity, then 1x = x for all x * E.

(c) α(βx) = (αβ)x for all α, β * K and x * E.

(d) α(x + y) = αx + αy for all α * K and all x, y * E.

(e) (α + β)x = αx + βx for all α, β * K and x * E.
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2 Functional Analysis

Note. For reasons we will discuss later, all vector spaces in this book will

be over R or C (denoted by K when we do not wish to specify which).

Furthermore, for the sake of sanity, we will always assume that our vector

spaces are non-zero.

1.1.2 DEFINITION Let E be a vector space over K and let S = {x1, x2, . . . , xn} be a

finite set of vectors in E.

(i) A linear combination of these vectors is an expression of the form α1x1 +

α2x2 + . . . + αnxn, where αi * K for all 1 f i f n.

(ii) The set S is said to be linearly dependent if there is some vector in S

which can be expressed as a linear combination of the remaining vectors.

Equivalently, S is linearly dependent if there are scalars α1, α2, . . . , αn in K,

not all of which are zero, such that

α1x1 + α2x2 + . . . + αnxn = 0. (1.1)

(iii) The set S is said to be linearly independent if it is not linearly dependent.

Equivalently, S is linearly independent if, whenever α1, α2, . . . , αn are scalars

such that Equation 1.1 holds, then each αi is forced to be zero.

1.1.3 DEFINITION A Hamel basis for a vector space E is a set Λ ¢ E such that

every element of E can be expressed uniquely as a finite linear combination of

elements in Λ.

The word ‘finite’ is crucial in the above definition. An infinite sum is necessarily

defined as a limit of partial sums and therefore only makes sense in a vector space

that is equipped with a topology. There will come a time when we do equip vector

spaces with topologies, and we will discuss series in that context. However, a linear

combination will always mean a finite sum.

The next few results ought to be familiar, so we omit the proofs. Hoffman and

Kunze [27] and Halmos [24] are good references for all this and more.

1.1.4 PROPOSITION For a subset Λ ¢ E, the following are equivalent:

(i) Λ is a Hamel basis for E.

(ii) Λ is a maximal linearly independent set.

(iii) Λ is a minimal spanning set.
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Preliminaries 3

1.1.5 THEOREM (ZORN’S LEMMA) Let (F ,f) be a partially ordered set such that

every totally ordered subset has an upper bound. Then F has a maximal element.

Aside. If C is a subset of F , an upper bound for C is an element x0 * F (not

necessarily in C), with the property that x f x0 for all x * C. A maximal

element in F is an element m with the property that, if x * F and m f x,

then m = x. An important point that is often confusing is this: A maximal

element of F need not be an upper bound for F !

1.1.6 THEOREM Every vector space has a Hamel basis. In fact, if Λ0 ¢ E is any linearly

independent set, then there exists a Hamel basis Λ of E such that Λ0 ¢ Λ.

1.1.7 EXAMPLE

(i) For E = Kn, we write ei := (0, 0, . . . , 0, 1, 0, . . . , 0) (with 1 in the ith position).

The set {ei : 1 f i f n} is called the standard basis for Kn.

(ii) Define

c00 := {(xn)
∞
n=1 : xi * K, and there exists N * N such that xi = 0 for all i g N}.

Members of c00 are sequences that are eventually zero (or equivalently,

sequences with finite support). It is a vector space over K where the vector

space operators are defined componentwise. Write ei for the sequence

(ei)j = δi,j =

{
1 : if i = j,

0 : otherwise.

Then {ei : i * N} is a basis for c00.

(iii) Define

c0 = {(xn)
∞
n=1 : xi * K, and lim

i³∞
xi = 0}.

Note that {ei : i * N} as above is a linearly independent set but not a basis

for c0. We will prove later that any basis of c0 must be uncountable (see

5.1.4 Corollary). For now, though, give an example of an element in c0 that

cannot be expressed as a linear combination of the {ei}.
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4 Functional Analysis

(iv) Let a, b * R with a < b, and define

C[a, b] := { f : [a, b] ³ K continuous}.

This is a vector space over K under pointwise addition and scalar

multiplication. For n g 0, let en(x) := xn, then {en : n g 0} is a linearly

independent set, but it is not a basis for C[a, b] (once again, do verify this).

More generally, if X is a compact, Hausdorff space, we set C(X) to denote

the space of continuous, K-valued functions on X. This is a vector space

under pointwise operations as well.

We will continue to develop this collection of examples as we go through the

book. For the most part, all examples will fall into three ‘types’: finite dimensional

vector spaces, sequence spaces and function spaces. While all of them may be

profitably thought of as function spaces, it is more intuitive to think of them as

different objects.

1.1.8 THEOREM If E is a vector space, then any two Hamel bases of E have the same

cardinality. This common number is called the dimension of E.

We omit the proof of this result. In the finite dimensional case, this is proved

in Hoffman and Kunze [27, Section 2.3] while the proof in the infinite dimensional

case is similar to that of Lemma 3.4.1 in Chapter 3.

1.1.9 DEFINITION Let E and F be two vector spaces.

(i) A function T : E ³ F is said to be a linear transformation or an operator if

T(αx + y) = αT(x) + T(y)

for all x, y * E and α * K.

(ii) We write L(E, F) for the set of all linear operators from E to F. If S, T *

L(E, F) and α * K, we define the operators (S + T) and αS by

(S + T)(x) := S(x) + T(x), and (αS)(x) = αS(x).

Clearly, this makes L(E, F) a K-vector space.

(iii) If F = K, then a linear transformation T : E ³ K is called a linear

functional.
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Preliminaries 5

(iv) Given a linear transformation T : E ³ F, there are two sets associated to T

that we will often refer to:

ker(T) := {x * E : T(x) = 0} and Range(T) := {T(x) : x * E}.

It is easy to check that ker(T) and Range(T) are subspaces of E and F,

respectively.

(v) A linear transformation T : E ³ F is said to be an isomorphism if T is

bijective. If such a map exists, we write E >= F.

1.1.10 EXAMPLE

(i) Let E = Kn, F = Km; then any m × n matrix A with entries in K defines

a linear transformation TA : E ³ F given by x �³ A(x). Conversely, if

T * L(E, F), then the matrix whose columns are {T(ei) : 1 f i f n} defines

an m × n matrix A such that T = TA. If Mm×n(K) denotes the vector space

of all such matrices, then there is an isomorphism of vector spaces

L(E, F) >= Mm×n(K)

given by TA �³ A. If we replace the standard basis {e1, e2, . . . , en} by another

basis Λ of E, we get another isomorphism from L(E, F) ³ Mm×n(K). Thus,

the isomorphism is not canonical (it depends on the choice of basis).

(ii) Let E = c00 and define ϕ : E ³ K by

ϕ((xj)) :=
∞

∑
n=1

xn.

Note that ϕ is well-defined and linear. Thus, ϕ * L(c00, K).

(iii) Let E = C[a, b] and define ϕ : E ³ K by

ϕ( f ) :=
∫ b

a
f (t)dt.

Then ϕ * L(C[a, b], K).

(iv) Let E = F = C[0, 1]. Define T : E ³ F by

T( f )(x) :=
∫ x

0
f (t)dt.

Note that T is well-defined (from Calculus) and linear. Thus T * L(E, F).
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6 Functional Analysis

1.1.11 DEFINITION Let E be a vector space and F be a subspace of E.

(i) The quotient space, denoted by E/F, is the quotient group, viewing E as an

abelian group under addition and F as a (normal) subgroup. Note that E/F

has a natural vector space structure, with addition given by

(x + F) + (y + F) := (x + y) + F,

and scalar multiplication given by α(x+ F) := αx+ F for α * K and x, y* E.

(ii) The quotient map, denoted by π : E ³ E/F, is given by x �³ x + F. It is a

surjective linear transformation such that ker(π) = F.

(iii) Furthermore, we define the codimension of F by codim(F) := dim(E/F).

(iv) If codim(F) = 1, then we say that F is a hyperplane of E.

Given a non-zero linear functional ϕ : E ³ K, the subspace ker(ϕ) is a

hyperplane in E. Conversely, every hyperplane is of this form.

The next result is a simple consequence of Theorem 1.1.6, and we will omit its

proof. Henceforth, we will write ‘F < E’ to indicate that F is a subspace of E.

1.1.12 PROPOSITION Let E be a finite dimensional vector space and F < E. Then

codim(F) = dim(E)2 dim(F).

One rarely mentions the First Isomorphism Theorem in the context of vector

spaces but that is perhaps because the Rank–Nullity Theorem hogs the limelight.

Also, the proof is completely analogous to the case of groups.

1.1.13 THEOREM (FIRST ISOMORPHISM THEOREM) Let T : E ³ F be a linear

transformation. Then

(i) ker(T) < E and Range(T) < F.

(ii) Furthermore, the map T̂ : E/ ker(T) ³ Range(T) given by

x + ker(T) �³ T(x)

is an isomorphism.

Let us now put the Rank–Nullity Theorem in its place. It is a direct consequence

of the First Isomorphism Theorem, with a touch of Proposition 1.1.12.

1.1.14 THEOREM (RANK–NULLITY THEOREM) If T : E ³ F is a linear

transformation and E is finite dimensional, then dim(ker(T)) + dim(Range(T)) =

dim(E).
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Preliminaries 7

Recall that the nullity of T is dim(ker(T)) and the rank of T is dim(Range(T)).

Note that the dimension of the co-domain of the linear transformation plays no

role in the Rank–Nullity Theorem; one merely needs the domain to be finite

dimensional.

1.2 Review of Measure Theory

Historically, Lebesgue’s theory of measure and integration provided great impetus

to the then fledgling subject of Functional Analysis. In fact, it can be argued that

Functional Analysis grew out of a need to understand the Lp spaces and operators

between them. Therefore measure theory will be used liberally throughout this

book.

However, to start with, we do not assume that the reader is necessarily familiar

with all the nuances of measure theory. Instead, we would like to take a middle

path. We will assume some familiarity with the notion of a measure, measurable

functions, and basic integration theory, such as those available in the first few

chapters of Royden [49] or Rudin [51]. As we go along, we will need more and

more, and we hope that the reader will pick those things up as and when needed.

For now, though, let us refresh our collective memories with the basic notions.

1.2.1 DEFINITION Let X be a set. A σ-algebra on X is a collection M of subsets of

X satisfying the following axioms:

(a) ∅ * M.

(b) If E * M, then Ec := X \ E * M.

(c) If {E1, E2, . . .} is a sequence of sets in M, then
⋃∞

n=1 En * M.

The pair (X,M) is called a measurable space and the members of M are called

measurable sets.

It is a useful fact (and one that is easy to prove) that if {Mα : α * J} is a

family of σ-algebras on a set X, then the intersection
⋂

α*J Mα is also a σ-algebra.

In particular, if S is a collection of subsets of X, then there is a unique smallest

σ-algebra on X that contains S . This is called the σ-algebra generated by S . The

most important example of this phenomenon is the following.

1.2.2 DEFINITION Let X be a topological space. The σ-algebra generated by the

topology on X is called the Borel σ-algebra on X and is denoted by BX . The

members of this σ-algebra are called Borel sets.
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8 Functional Analysis

Important examples of Borel sets are the following: A countable union of closed

sets is called an Fσ-set and the countable intersection of open sets is called a Gδ-set.

1.2.3 DEFINITION Let (X,M) be a measurable space and Y be a topological space.

A function f : X ³ Y is said to be measurable if f21(U) * M for every open set

U ¢ Y.

For the most part, measurable functions in this book will take values in K

(= R or C), where the latter is equipped with the usual topology. When it is

important to make a distinction, we will refer to such functions as real-measurable

or complex-measurable, as the case may be.

1.2.4 EXAMPLE

(i) Given a subset E ¢ X, the characteristic function of E is the map χE : X ³

R given by

χE(x) =

{
1 : if x * E,

0 : otherwise.

Clearly, χE is a measurable function if and only if E is a measurable set.

(ii) More generally, a linear combination of characteristic functions of

measurable sets is measurable. Such a function is called a simple function.

Alternatively, a simple function is a measurable function whose range is a

finite set.

(iii) If X and Y are both topological spaces and we take M = BX , then any

measurable function f : X ³ Y is said to be Borel measurable. Notice that

every continuous function is Borel measurable (however, there are Borel

measurable functions that are not continuous).

The class of measurable functions is closed under a number of operations, which

we list below.

1.2.5 PROPOSITION Let (X,M) be a measurable space.

(i) If f : X ³ K, g : X ³ K are measurable functions and α * K, then α f + g

is also measurable. So is the pointwise product f g : X ³ K, which is given by

x �³ f (x)g(x).

(ii) If u : X ³ R and v : X ³ R are real-measurable functions, then f := u + iv

is complex-measurable. Conversely, if f : X ³ C is complex-measurable, then its

real and imaginary parts are real-measurable functions.
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Preliminaries 9

(iii) If f , g : X ³ R are measurable, then so are max{ f , g} and min{ f , g},

which are defined by max{ f , g}(x) := max{ f (x), g(x)}, and min{ f , g}(x) :=

min{ f (x), g(x)}. In particular,

f+ := max{ f , 0}, and f2 := 2min{ f , 0}

are both measurable.

(iv) If f : X ³ R is measurable, then so is | f | = f+ + f2.

(v) If { fn} are a sequence of K-valued measurable functions, then lim supn³∞ fn and

lim infn³∞ fn are both measurable. In particular, the pointwise limit of measurable

functions (if it exists) is measurable.

One important result that allows us to prove theorems about arbitrary

measurable functions by first proving them for characteristic functions is the

following.

1.2.6 THEOREM Let f : X ³ R+ be a non-negative measurable function. Then there

is a sequence (sn) of simple functions such that for each x * X, (sn(x)) is an increasing

sequence of non-negative real numbers with limn³∞ sn(x) = f (x).

Let us now turn to the notion of measure. This is a vast generalization of the

idea of the ‘volume’ of a set and, unlike geometric notions of volume, it turns out

to be flexible enough that we can prove interesting theorems about it.

1.2.7 DEFINITION Let (X,M) be a measurable space. A positive measure on

(X,M) is a function µ : M ³ [0, ∞] satisfying the following axioms.

(a) µ(∅) = 0.

(b) µ is countably additive: If {E1, E2, . . .} is a sequence of mutually disjoint sets in

M, then

µ

(
∞⋃

n=1

En

)
=

∞

∑
n=1

µ(En).

The triple (X,M, µ) is called a measure space.

We will encounter both real and complex measures later on in the book, but the

notion of a positive measure is the most basic. Therefore a positive measure will

simply be referred to as a measure (without any qualification).
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10 Functional Analysis

1.2.8 EXAMPLE

(i) Let X be any set and x0 * X be a fixed point. Let M := 2X be the set of all

subsets of X and let µ : M ³ R be the function

µ(E) :=

{
1 : if x0 * E,

0 : if x0 /* E.

This is called the Dirac measure at x0 and is denoted by δx0 .

(ii) Let X be any set and M := 2X as above. Define µ : M ³ [0, ∞] by

µ(E) :=

{
|E| : if E is finite,

∞ : otherwise.

(where | · | denotes the cardinality function). It is clear that this is a measure

on (X,M), and is called the counting measure.

(iii) If X is a topological space, a measure on X is called a Borel measure if its

domain contains BX . Note that the domain of the measure may be larger

than BX as well.

(iv) A measure µ on a measurable space (X,M) is said to be a finite measure if

µ(X) < ∞ and it is said to be σ-finite if X can be expressed as a countable

union of sets of finite measure.

The most important measure is the Lebesgue measure on R. No matter how you

do it, the construction of the measure is long and complicated. However, we will

describe it in enough detail so as to have a working understanding of it.

Consider R, equipped with the usual topology. Then there is a σ-algebra L

which contains BR , and a positive measure m : L ³ [0, ∞] satisfying the following

properties:

(a) If a, b * R with a < b, then m([a, b)) = (b 2 a).

(b) If E * L and x * R, then E + x * L and m(E + x) = m(E). This property is

called translation invariance of the measure m (here, E + x is the set {y + x :

y * E}).

(c) If E * L, then

m(E) = inf{m(U) : U open, E ¢ U} = sup{m(K) : K compact, K ¢ E}.

This property is called regularity of the measure m.
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