
Cambridge University Press & Assessment
978-1-009-24377-3 — Coxeter Bialgebras
Marcelo Aguiar , Swapneel Mahajan
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Introduction

We now describe the contents of the monograph in more detail, along
with pointers to important results. For organizational purposes, the book has
been divided into three parts; they are preceded by an introductory chapter
on reflection arrangements.

Reflection arrangements. (Chapter 1.) A linear hyperplane arrangement
A is a finite collection of hyperplanes in a real vector space passing through
the origin. It has many associated geometric objects such as faces, chambers,
flats, bifaces, lunes, bilunes, and so on (Table 1.1). Some illustrative pictures
are shown below.

face

flat lune

Unlike faces and lunes, flats do not have a boundary; in fact they are sub-
spaces, so the middle picture is to be interpreted as extending indefinitely to
the plane of the paper.

The set of faces, flats, bifaces carry monoid structures called the Tits
monoid, Birkhoff monoid, Janus monoid, respectively. Linearizing them over
a field k yields the Tits algebra, Birkhoff algebra, Janus algebra, respectively.
We also construct certain incidence algebras called the flat-incidence alge-
bra, lune-incidence algebra, bilune-incidence algebra. They contain various
interesting kinds of zeta and Möbius functions.

We say A is a linear reflection arrangement if it is preserved by reflec-
tion in any of its hyperplanes (assuming an inner product on the ambient
vector space). The group generated by these reflections is finite and is called
the Coxeter group of A. We denote it by W . By taking W -orbits of faces,
flats, bifaces, lunes, and so on, we obtain notions of face-types, flat-types,
biface-types, lune-types, and so on (Table 1.2). We introduce the groupoid
of biface-types whose objects are face-types and morphisms are biface-types
(Section 1.7). A wealth of enumeration identities related to face-types and
shuffles are given in Sections 1.8 and 1.9. Similarly, we have the W -invariant
subalgebras of all algebras mentioned above. We call them the invariant Tits
algebra, invariant lune-incidence algebra, and so on (Sections 1.10 and 1.12).
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2 INTRODUCTION

The braid arrangement, which is an important example of a reflection ar-
rangement, is reviewed in Section 1.16.

Parts I and II

We give a combined introduction to Coxeter species and Coxeter spaces.
They are formulated in terms of faces and face-types, respectively; Table III
summarizes the main notations. Hopf theories of these two objects proceed
largely in parallel with each other. We bring out these similarities, often by
putting concepts next to each other in tabular form. At the same time and
more importantly, we also point out subtle differences between the two.

Table III. Coxeter species and Coxeter spaces.

Faces Face-types

Coxeter species p, q β, w Coxeter spaces V, W σ

Coxeter monoids a, b µF

A Coxeter algebras A, B µT

Z

Coxeter comonoids c, d ΔF

A Coxeter coalgebras C, D ΔT

Z

Coxeter bimonoids h, k µF

A, Δ
F

A Coxeter bialgebras H, K µT

Z , Δ
T

Z

Coxeter species and Coxeter spaces. (Chapters 2 and 8.) Fix a reflection
arrangement A with Coxeter group W .

Coxeter species. A Coxeter species p is a family of vector spaces p[F ], one for
each face F , together with linear maps

βG,F : p[F ] → p[G] and w : p[F ] → p[wF ],

called support and type morphisms, the former whenever F and G have the
same support, and the latter for each F and w ∈ W , subject to suitable com-
patibility axioms, see (2.12a) and (2.12b). A Coxeter monoid a is a Coxeter
species together with linear maps

μF
A : a[F ] → a[A],

one for each A ≤ F , subject to naturality, associativity, unitality axioms, see
(2.28a) and (2.28b). A Coxeter comonoid c is defined dually using linear maps

ΔF
A : c[A] → a[F ]

for A ≤ F , subject to naturality, coassociativity, counitality axioms, see
(2.36a) and (2.36b). We refer to μ as the product and to Δ as the coproduct.
A Coxeter bimonoid h is a Coxeter species which carries a Coxeter monoid and
a Coxeter comonoid structure, and satisfies the bimonoid axiom, see (2.39). It
involves the Tits product on faces. The data in a Coxeter bimonoid is shown
in Summary 2.1.

The above notions can also be formulated in terms of flats and lunes,
see Summary 2.2. Further, they have commutative analogues obtained using
the (co)commutativity axiom, see (2.49) and (2.57) for faces and (2.52) and
(2.58) for flats and lunes. We also define a Coxeter q-bimonoid for a scalar
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INTRODUCTION 3

q by replacing the bimonoid axiom by the q-bimonoid axiom, see (2.42) and
(2.45). The q-distance function on faces plays a starring role here. For q = −1,
we use the term signed Coxeter bimonoid.

Coxeter spaces. A Coxeter space V is a family of vector spaces V[T ], one for
each face-type T , together with linear maps

σ : V[T ] → V[U ],

one for each biface-type σ, subject to suitable compatibility axioms (involving
composition of biface-types), see (8.28). A Coxeter algebra is a Coxeter space
together with linear maps

μT
Z : V[T ] → V[Z],

one for each Z ≤ T , subject to naturality, associativity, unitality axioms, see
(8.41). There is a dual notion of a Coxeter coalgebra, and a self-dual notion
of a Coxeter bialgebra. The bialgebra axiom involves a sum and is not set-
theoretic, see (8.64). It involves biprojection of biface-types which again has
the Tits product at its core. The data in a Coxeter bialgebra is shown in
Summary 8.3.

The above notions can also be formulated in terms of top-nested faces
starting with support and type morphisms

βG,D,F,C : V[F,C] → V[G,D] and w : V[F,C] → V[wF,wC],

and so on, see Summary 8.1. Another possibility is to formulate them in terms
of top-lunes, see Summary 8.2. Further, they have commutative analogues
obtained using the (co)commutativity axiom, see (8.79) and (8.88) for top-
nested faces, (8.82), (8.83) and (8.90) for top-lunes, (8.86) and (8.91) for
face-types. We also define a Coxeter q-bialgebra for a scalar q by replacing
the bialgebra axiom by the q-bialgebra axiom, see (8.66), (8.69), (8.73). For
q = −1, we use the term signed Coxeter bialgebra.

Coxeter species vs Coxeter spaces. Coxeter species carry more structure than
Coxeter spaces. To appreciate this point, suppose u, v ∈ W are such that
u(F ) = v(F ) = G and u(C) = D and v(C) = E as shown in Figure II.

C D

E

F G

u

v

Figure II. Coxeter species vs Coxeter spaces.

For a Coxeter species p, we have u, v : p[F ] → p[G], while for a Coxeter
space V, we have u : V[F,C] → V[G,D] and v : V[F,C] → V[G,E]. The key
observation is: In the first case, u and v link the same two objects, while in
the second case, they link different objects.
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4 INTRODUCTION

Duality functor. Duality was mentioned in the above discussion. More for-
mally: There is a duality functor on the category of Coxeter species which
interchanges Coxeter monoids and Coxeter comonoids, and preserves Coxeter
q-bimonoids (Sections 2.3.8 and 2.5.9). There is a similar duality functor on
the category of Coxeter spaces which interchanges Coxeter algebras and Cox-
eter coalgebras, and preserves Coxeter q-bialgebras (Sections 8.4.10 and 8.7.8).

Signature functors. There are ways to connect the unsigned and signed worlds.
For Coxeter species, we have the u-signature functor and o-signature functor,
see Section 2.8. They are related to signature spaces under and over flats,
respectively. For Coxeter spaces, we have the u-signature functor, see Sec-
tion 8.10. The additional structure present in a Coxeter species allows for
two signature functors as opposed to only one for Coxeter spaces.

Functor categories. A salient feature of the categories of Coxeter monoids,
Coxeter comonoids, Coxeter bimonoids is that they are functor categories
just like the category of Coxeter species (Section 2.9). The same holds for
the categories of Coxeter (co, bi)algebras (Section 8.11). This is possible
due to the absence of the traditional tensor product of vector spaces in the
construction of these categories.

Bimonads and bimonad bialgebras. The preceding notions can be put into a
categorical framework using monads, comonads, bimonads (Appendix A.1).
There exists a bimonad (T , T ∨, λ) on the category of Coxeter species whose
bialgebras are Coxeter bimonoids. Similarly, there exists a bimonad (T , T ∨, λ)
on the category of Coxeter spaces whose bialgebras are Coxeter bialgebras.
These results along with their companions are stated in Propositions 2.71 and
8.115. For commutative aspects, see Propositions 2.78 and 8.121. We mention
in particular the bimonads (S,S∨, λ) and (S,S∨, λ).

Examples. (Chapters 4 and 10.) We now turn to examples.

Coxeter bimonoids. The exponential Coxeter bimonoid E is defined by setting
E[A] := k for all faces A, and all structure maps

βG,F : E[F ] → E[G], w : E[F ] → E[wF ],

μF
A : E[F ] → E[A], ΔF

A : E[A] → E[F ]

to be identities. The bimonoid axiom holds trivially. More generally, for a
W -module M , we have the decorated exponential Coxeter bimonoid EM whose
components are all M ; structure maps involving β, μ, Δ are identities, while
those involving w employ the action of w on M . See Tables 4.1 and 4.2 for
closely related objects.

More examples of Coxeter bimonoids based on chambers, faces, flats, top-
nested faces, top-lunes, pairs of chambers are given in Chapter 4.

Coxeter bialgebras. The Coxeter bialgebra of polynomials k[x] is defined by
setting k[x][T ] := k for all face-types T . The linear maps σ are all identities.
For clarity, we write xT for the basis element 1 ∈ k[x][T ]. The product and
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INTRODUCTION 5

coproduct are

μT
Z : k[x][T ] → k[x][Z]

xT �→ xZ

ΔT
Z : k[x][Z] → k[x][T ]

xZ �→ dT/Z xT ,

where dT/Z is the number of faces of type T greater than some fixed face of
type Z. (For the braid arrangement, dT/Z is a product of multinomial coeffi-
cients.) More generally, we have the Coxeter q-bialgebra of polynomials kq[x]
obtained by replacing dT/Z by a suitable face-type enumeration polynomial
dT/Z(q) (which generalizes the Poincaré polynomial of W ). The verification of
the q-bialgebra axiom for kq[x] is nontrivial and equivalent to the gate identity
(1.59). As companions to k[x], we define the divided power Coxeter bialgebra

k{x} and signed Coxeter bialgebra of dual numbers k[dx], see Table 10.1.
More generally, for a W -module M , we define the tensor Coxeter q-

bialgebra Tq(M), shuffle Coxeter q-bialgebra Tq
∨(M), and symmetric Coxeter

bialgebras S(M) and S∨(M), exterior signed Coxeter bialgebras E(M) and
E∨(M), see Table 10.3. TheW -action onM by shuffles enters into (co)product
formulas. The q-bialgebra axioms for Tq(M) and Tq

∨(M) are equivalent to
identities (1.69) in the group algebra of W .

More examples of Coxeter bialgebras based on face-types, flat-types, Cox-
eter symmetries are given in Chapter 10.

Face-type enumeration. (Sections 1.8 and 1.9.) As noted above, (co)products
of Coxeter bialgebras are quite intricate and tied to ideas from face-type
enumeration. A systematic summary of such connections is given in Table IV.
Identities in the left column are used to prove results in the right column.
Interestingly, the logical flow can be reversed. That is, one can first prove
results in the right column via the technology of universal constructions or
Fock functors, and then use them to deduce identities in the left column.

Table IV. Coxeter bialgebras and face-type enumeration.

Face-type enumeration Relevance to Coxeter bialgebras

polynomials (1.38), (1.41), (1.52) Observation 8.99 (Section 8.9)

multiplicative property (1.32) Section 10.2.4, Lemma 10.12, Section 10.2.17

gate identity (1.59) Lemma 9.89, Section 10.2.4

gate identity (1.57), identity (1.40) Section 10.4.4

gate identity (1.58) Lemma 10.79

alternating sign identities (1.63)
Lemma 9.130, antipode formulas

(10.30), (10.116), (10.117)

multiplicative property (1.66),
identities (1.69), (1.70), (1.71)

Section 10.3.6

alternating sign identity (1.72) antipode formulas (10.57) and (10.58)
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6 INTRODUCTION

The above phenomena are not seen for Coxeter bimonoids where the
bimonoid axiom is set-theoretic and easier to handle. This simplicity happens
because of the extra structure present in faces in comparison to face-types
which keeps enumeration polynomials hidden from view.

Shuffles. (Section 1.6.) For any face-type T , we have the notion of T -shuffles.
These are Coxeter symmetries obtained by taking Tits product of a reference
chamber Cr with faces of type T .

Shuffles become visible in the study of Coxeter bialgebras when we focus
on the S-component, where S is the maximum face-type. The starting point
is that V[S] is a W -module for any Coxeter space V (Exercise 8.38). The
action of T -shuffles on H[S] is present in the q-bialgebra axiom of H. We also
already noted that shuffles appear in (co)product formulas of the tensor and
shuffle Coxeter q-bialgebras; this is because they are “freely generated” by
their S-components. See Table V for precise pointers.

Table V. Coxeter bialgebras and shuffles.

T -shuffles, T -deshuffles (1.21), (1.22), (1.23)

(co)projection of biface-types Exercise 1.35

q-bialgebra axiom Exercises 8.73 and 8.76

tensor and shuffle Coxeter q-bialgebras formulas (10.37) and (10.39)

Hopf theory for reflection arrangements. (Chapters 3 and 9.) We de-
velop the basic theory of Coxeter bimonoids and Coxeter bialgebras discussing
primitive and decomposable filtrations, universal constructions, abelianization
and coabelianization, Hadamard product and enrichment, exp-log correspon-
dences, norm transformation, characteristic operations, antipode. Pointers to
important formulas and results are summarized in Table VI. This can be com-
pared with the theory for bimonoids for hyperplane arrangements developed
in [11, Part II]. Some specific points are highlighted below.

Species vs Coxeter species. The bimonoid and (co)commutativity axioms for
a Coxeter species do not involve type morphisms. The same is true for maps
involved in exp-log correspondences. As a consequence, results on Coxeter
species can be formally deduced from corresponding results on species proved
in [11], see Remark 2.52. In contrast, for Coxeter spaces, both support and
type morphisms intervene in the bialgebra and (co)commutativity axioms.
This explains why in Table I in the preface, in the last column, there is no
analogue of species and bimonoids (involving only support morphisms).

The connection between species and Coxeter species can be made precise
using semidirect products, see (2.67) and Lemma 2.70. This is analogous to
the connection between vector spaces and W -modules. There is more that
one can do with W -modules than with vector spaces. The same is true for
Coxeter species. For instance, type morphisms in a Coxeter species allow us
to connect it to Coxeter spaces via Fock functors.
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INTRODUCTION 7

Table VI. Hopf theory for Coxeter species and Coxeter spaces.

Hopf theory Coxeter species Coxeter spaces

Cauchy powers Formula (3.1) Formula (9.1)

com. Cauchy powers Formula (3.4) Formulas (9.4), (9.5)

primitive and decomposable
filtrations

Table 3.1 Table 9.1

(3.9) and (3.12) (9.9) and (9.12)

primitive and
indecomposable part functors

Lemma 3.5 Lemma 9.8

universal constructions
and adjunctions

Table 3.2 Table 9.2

Summary 3.1 Summary 9.1

(co)abelianization adjunctions Summary 3.2 Summary 9.2

Hadamard product
Table 3.3 Table 9.3

Formula (3.53) Formula (9.59)

enrichment via
internal hom

Section 3.6.3 Section 9.6.3

enrichment via universal
measuring

Section 3.7.4 Section 9.7.4

exp-log correspondences
((co)derivation version)

Table 3.4 Table 9.4

Theorem 3.37 Theorem 9.56

Theorem 3.43 Theorem 9.61

exp-log correspondences
(series version)

Theorem 3.56 Theorem 9.76

Theorem 3.59 Theorem 9.80

Lemma 3.66 Lemma 9.85

pq map Proposition 3.44 Proposition 9.65

logarithm of identity
Proposition 3.46 Proposition 9.67

Proposition 3.50 Proposition 9.72

general q-norm map Theorem 3.79 Theorem 9.110

characteristic operation Formula (3.149) Formula (9.155)

two-sided characteristic operation Formula (3.157) Formula (9.164)

antipode Formula (3.159) Formula (9.171)

rank one (toy example) Section 7.8 Section 13.8
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8 INTRODUCTION

Universal constructions. There is a complete parallel between universal con-
structions for Coxeter species and Coxeter spaces. These constructions follow
from the existence of the bimonad (T , T ∨, λ) on Coxeter species and bimonad
(T , T ∨, λ) on Coxeter spaces. Thus, T (p) is the free Coxeter monoid on the
Coxeter species p, while T (V) is the free Coxeter algebra on the Coxeter space
V. Explicitly,

T (p)[A] =
⊕

F :A≤F

p[F ] and T (V)[Z] =
⊕

T :Z≤T

V[T ],

with product components μF
A and μT

Z given by inclusion. Cofree objects are

constructed dually using T ∨ and T ∨. Going one step further, these free and
cofree objects are used to build universal Coxeter bimonoids and Coxeter
bialgebras by using the mixed distributive laws λ and λ.

For commutative aspects, we need to bring in the monads S, S and co-
monads S∨, S∨. Thus, S(p) is the free commutative Coxeter monoid on the
Coxeter species p, and S(V) is the free commutative Coxeter algebra on the
Coxeter space V, and so on.

Hadamard product. Coxeter bimonoids possess certain features not to be seen
for Coxeter bialgebras. The key distinction is that the bimonoid axiom is set-
theoretic, while the bialgebra axiom is not. As a result, Hadamard product
preserves Coxeter bimonoids, but it does not preserve Coxeter bialgebras in
general. This yields the decoration functor on Coxeter species obtained by
taking Hadamard product with EM (Section 4.9) which has no analogue for
Coxeter spaces. Similarly, we have the biconvolution Coxeter bimonoid built
out of two Coxeter bimonoids, but no analogous construction for Coxeter
bialgebras. See Remarks 9.35 and 9.38. See also Theorem 7.12 which is
specific to Coxeter bimonoids.

Exp-log correspondences. Interestingly, exp-log correspondence (say between
primitive and group-like series) is not unique in general; it depends on the
choice of an invariant noncommutative zeta and Möbius function. The same
remark applies to logarithm of the identity map. There are two situations
where we do have uniqueness, namely, the bicommutative setting and the q-
setting for q not a root of unity. In these situations, the logarithm of the
identity map induces an isomorphism from the indecomposable part to the
primitive part, and its inverse is the pq map. The latter is always defined (that
is, with no dependence on any noncommutative zeta or Möbius function).

There is no difference between the free Coxeter algebra and free com-
mutative Coxeter algebra on one generator. In contrast, the free Coxeter
monoid and free commutative Coxeter monoid on one generator differ. In our
notations,

T (x) = Γ �= E = S(x) and T (X) = k[x] = S(X).

This gives rise to two notions of exponential series for Coxeter monoids, but
only one notion for Coxeter algebras.
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Characteristic operations. Coxeter bimonoids admit characteristic operations
by faces, while Coxeter bialgebras admit characteristic operations by face-
types. To say this precisely, recall that the Tits algebra has a basis indexed by
faces, while the invariant Tits algebra has a basis indexed by face-types. For a
cocommutative Coxeter bimonoid h and cocommutative Coxeter bialgebra H,

F · x := μF
OΔ

F
O(x) and T · x := μT

∅ Δ
T
∅ (x),

respectively, define a left action of the Tits algebra on h[O] and of the invariant
Tits algebra on H[∅]. Here O is the smallest face, and ∅ is the smallest face-
type.

Moreover, for h as above, the Tits algebra action on h[O] combined with
the W -action on h[O] via type morphisms yields an action of the Coxeter–
Tits algebra on h[O]. (The Coxeter–Tits algebra is the semidirect product of
the action of the Coxeter group on the Tits algebra.) In fact, this leads to
an equivalence between categories of cocommutative Coxeter bimonoids and
left Coxeter–Tits algebra modules (Proposition 3.86). This and other similar
results are summarized in Proposition 3.82.

q not a root of unity. We prove many results for Coxeter q-bimonoids and
Coxeter q-bialgebras under the assumption that q is not a root of unity. This
assumption while convenient to state is stronger than what is required. Since
our theory is local to a reflection arrangement, the results remain valid pro-
vided we stay away from certain specific roots of unity, namely, the zeroes
of the determinants of the Varchenko matrices in Theorem 1.56 and its proof
(which ensures that the two-sided q-zeta and q-Möbius functions exist). For
instance, in rank one, q �= ±1 suffices, see [11, Remark 13.78] in this regard.

Coxeter operads. (Chapters 5 and 11.) A Coxeter dispecies p can be for-
mulated using flats or top-lunes or face-types as a family of vector spaces

• p[X,Y], one for each pair of flats X ≤ Y, or
• p[L,M], one for each pair of top-lunes L ≤ M, or
• p[T, U ], one for each pair of face-types T ≤ U .

In each of these three setups, the components are connected by linear maps
subject to suitable compatibilities. This richness of setups is specific to the
Coxeter context and not to be seen for dispecies considered in [11, Chapter 4].

The category of Coxeter dispecies is a monoidal category under the sub-
stitution product, see formulas (11.10), (11.11), (11.15). Monoids wrt this
product are Coxeter operads. The substitution map of a Coxeter operad is
summarized in Table 11.1. (It can be compared to multiplication of upper
triangular matrices.)

Coxeter operad monoids and Coxeter operad algebras. The category of Cox-
eter species is a left module category over the category of Coxeter dispecies
via (5.9). (This structure can be compared to how an upper triangular matrix
acts on a column vector.) Thus, for any Coxeter operad a, we have the cat-
egory of left a-modules in Coxeter species. We call it the category of Coxeter
a-monoids.
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10 INTRODUCTION

Similarly, the category of Coxeter spaces is a left module category over
the category of Coxeter dispecies via any of the equivalent formulas (11.25),
(11.28), (11.29). Thus, for any Coxeter operad a, we have the category of left
a-modules in Coxeter spaces. We call it the category of Coxeter a-algebras.
The structure map of a Coxeter a-algebra is summarized in Table 11.2.

Coxeter commutative, associative, Lie operads. The three fundamental exam-
ples of Coxeter operads are the Coxeter commutative, associative, Lie operads
which we denote Com, As, Lie, respectively. We develop them in all three
setups: flats, top-lunes, face-types. Each setup has its advantage and appeal.
A Coxeter As-monoid is the same as a Coxeter monoid, while a Coxeter As-
algebra is the same as a Coxeter algebra. Such results along with connections
to monad algebras are summarized in Tables 5.1 and 11.4.

In contrast to Com and As, it is considerably harder to formulate Lie

and establish its presentation as a binary quadratic structure. The core work
for this was done in [10, Sections 10.6 and 14.5], [11, Example 4.12].

Lie theory for reflection arrangements. (Chapters 6 and 12.) Along with
Coxeter (co, bi)monoids, we also have the notion of a Coxeter Lie monoid.
Similarly, we have the notion of a Coxeter Lie algebra. These are Coxeter
Lie-monoids and Coxeter Lie-algebras, respectively, associated to the Coxeter
operad Lie.

Table VII. Lie theory for Coxeter species and Coxeter spaces.

Lie theory Coxeter species Coxeter spaces

(co)commutator
(co)bracket

Formula (6.4) Formula (12.10)

Formula (6.7) Formula (12.15)

primitive and
indecomposable parts

Proposition 6.1 Proposition 12.3

Proposition 6.2 Proposition 12.4

(co)free Lie
construction

Theorem 6.3 Theorem 12.7

Theorem 6.5 Theorem 12.12

universal (co)enveloping
construction

Theorem 6.8 Theorem 12.21

Theorem 6.11 Theorem 12.26

Pointers to important concepts and results are summarized in Table VII.
This can be compared with the theory for Lie monoids for hyperplane ar-
rangements developed in [11, Chapter 16].

Binary operations vs higher operations. The product maps μF
A and μT

Z

in a Coxeter monoid and Coxeter algebra are “higher operations” arising from
elements of the Coxeter associative operad As. More traditionally, using the
presentation of As, one can consider “binary operations”, that is, μF

A and
μT
Z only when A⋖ F and Z ⋖ T subject to the covering associativity axiom.

The same can be done for Com and Lie. (The Lie case is much harder
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