

Accounting for Carbon

The ability to accurately monitor, report and verify greenhouse gas emissions is the cornerstone of any effective policy to mitigate climate change. *Accounting for Carbon* provides the first authoritative overview of the monitoring, reporting and verification (MRV) of emissions from the industrial site, project and company level to the regional and national level. It describes the MRV procedures in place in more than 15 of the most important policy frameworks – such as emissions trading systems in Europe, Australia, California and China, and the United Nations Framework Convention on Climate Change – and compares them along key criteria such as scope, cost, uncertainty and flexibility. This book draws on the work of engineers and economists to provide a practical guide to help government and non-governmental policy makers and key stakeholders in industry to better understand different MRV requirements, the key trade-offs faced by regulators and the choices made by up-and-running carbon pricing initiatives.

VALENTIN BELLASSEN is a researcher at Institut National pour la Recherche Agronomique (INRA) where he focuses on the economics of agro-ecology. He is also an accredited UNFCCC reviewer for national greenhouse gas inventories. For four years, he worked at CDC Climat where he managed the research unit on MRV, agriculture and forestry.

NICOLAS STEPHAN is an investment officer at CDC Climat where he is in charge of voluntary carbon offsetting as well as participations in innovative carbon investment vehicles. He worked for five years in the research department of CDC Climat on various topics related to carbon and energy markets.

More Information

Accounting for Carbon

Monitoring, Reporting and Verifying Emissions in the Climate Economy

Edited by

VALENTIN BELLASSEN AND NICOLAS STEPHAN

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781009243216

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015 First paperback edition 2022

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Accounting for carbon: monitoring, reporting and verifying emissions in the climate economy / edited by Valentin Bellassen and Nicolas Stephan. pages cm

Includes bibliographical references and index.

ISBN 978-1-107-09848-0 (hardback)

- 1. Greenhouse gases-Measurement. 2. Environmental monitoring.
- Pollutants–Reporting.
 Greenhouse gases–Government policy.
 Emissions trading.
 Climatic changes–Economic aspects.
 Bellassen, Valentin, 1985– II. Stephan, Nicolas. TD885.5.G73A28 2015
 363.738′7463–dc23
 2014043078

ISBN 978-1-107-09848-0 Hardback ISBN 978-1-009-24321-6 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List of figures and map			page x1		
Li	st of	tables	xiii		
Li	st of	boxes	xvii		
N	otes o	on contributors	xviii		
A	cknoi	vledgements	xxii		
1	Introduction: key notions and trade-offs involved in				
	MR	Ving emissions	1		
	VAI	LENTIN BELLASSEN AND IAN COCHRAN			
	1.1	Purpose and audience for this book	1		
	1.2	Climate economics at work	2		
	1.3	Scale, scope, uncertainty and related trade-offs: key			
		definitions and stakes of MRV in climate economics	4		
	1.4	Outline, editorial choices and comparison tools			
		between chapters	8		
	App	pendix	12		
	Bibl	iography	16		
	Part	I MRV of territorial/jurisdictional emissions	19		
2	Tre	ndsetter for territorial schemes: national GHG			
	inventories under the UNFCCC				
	JEA	N-PIERRE CHANG AND VALENTIN BELLASSEN			
	2.1	Context	21		
	2.2	Objectives, national inventory system and challenges	27		
	2.3	Monitoring	33		
	2.4	Reporting	45		
	2.5	Verification	55		
	2.6	MRV costs	60		
	2.7	MRV ID table	63		

vi		Contents
	2.8 What practitioners say about it	68
	Acknowledgements	70
	Bibliography	71
3	Variant 1: region/city geographical inventories IAN COCHRAN	72
	3.1 Introduction	72
	3.2 Multiple methodologies and protocols based on	
	actors' needs	73
	3.3 Monitoring	79
	3.4 Reporting	86
	3.5 Conclusions: local needs currently prevail over	
	harmonization	89
	Bibliography	102
4	Variant 2: sectoral MRV at the jurisdictional	
	level – forestry (REDD+) in the VCS and the UNF	CCC 104
	MARIANA DEHEZA AND VALENTIN BELLASS	EN
	4.1 Context	104
	4.2 Variable scope of requirements: from baseline	
	only to full jurisdictional MRV	106
	4.3 Monitoring requirements	106
	4.4 Reporting	118
	4.5 Verification	118
	4.6 Comparison between VCS and UNFCCC	
	requirements for REDD+	120
	4.7 MRV costs	123
	4.8 Conclusion	127
	4.9 MRV ID table	127
	Bibliography	135
	Part II MRV of industrial sites and entities	137
5	Trendsetter for companies and industrial sites: the	EU
	Emissions Trading Scheme	139
	GUILLAUME JACQUIER AND VALENTIN BELI	LASSEN
	5.1 Context	139
	5.2 Monitoring	147
	5.3 Reporting and verification	168

\mathbf{M}	lor	e i	n	o	rm	ıat	10	on

Co	ntent	rs	vii
	5.4	MRV costs	173
	5.5	MRV ID table	177
	5.6	What practitioners say about it	183
	Bibli	ography	187
6	Vari	ant 1: the waste sector in Australia's Carbon Pricing	
	Med	chanism, another ETS at site level	190
	MA	RION AFRIAT AND EMILIE ALBEROLA	
	6.1	Context	190
	6.2	The waste sector covered by the Carbon Pricing	
		Mechanism	192
	6.3	Monitoring the waste sector's GHG emissions	193
	6.4	Reporting	204
	6.5	Verification	206
	6.6	Uncertainty related to waste emissions: is it an issue?	
		Should it be reduced?	211
	6.7		213
	6.8	MRV ID table	214
	Bibli	ography	219
7	Vari	ant 2: non-site level emissions in an ETS – the case of	
	elec	tricity importers in the California cap-and-trade	221
	MA	RION AFRIAT AND EMILIE ALBEROLA	
	7.1	Context	221
	7.2	Monitoring electricity importers under the GHG	
		Inventory Program	225
	7.3	Reporting: a separate report for imported electricity	
		according to sources	239
	7.4	Uncertainty in the Californian cap-and-trade program:	
		the carbon leakage issue	248
	7.5	Conclusion	254
	7.6	MRV ID table	254
	Bibli	ography	261
8	Vari	ant 3: emissions of a company/institution rather than	
		e: the case of the Shenzhen ETS	263
		PAR CHIQUET	
	8.1	China's domestic emissions reduction policy	263
	8.2	Shenzhen, China's first operating ETS pilot	268

<u>more</u>	11110	rmat	<u> 11011</u>	

viii			Contents
	8.3	Capping direct and indirect emissions	270
	8.4	MRV and compliance at company level	271
	8.5	Intensity-based cap and allowances	272
	8.6	Reporting, confidentiality and disclosure	276
	8.7	Enforcement of compliance	276
	8.8	MRV ID table	277
	Bibli	ography	282
9	Vari	ant 4: coexistence of voluntary and mandatory	
	fran	neworks at the company level - Carbon Disclosure	
	Proj	ect, EU ETS and French legal requirements	283
	ROM	MAIN MOREL AND IAN COCHRAN	
	9.1	Introduction	283
	9.2	French entities may be subject to up to four major	
		mandatory or voluntary GHG emissions monitoring	
		and reporting frameworks	284
	9.3	MRV ID table	295
	9.4	Four frameworks may be too many, even	
		though they are flexible enough to be synergetic	
		with one another	295
	9.5	Balancing internal management needs and an	
		increasing range of use for external GHG data	306
	9.6	Conclusions: the diversity of reporting frameworks	
		leads to higher costs, risks and opportunities	310
	Bibli	ography	311
10	Diro	ct measurement in the EU ETS	313
10		IS DIMOPOULOS	313
	10.1	Context	313
	10.2	Direct measurement fundamentals	314
	10.3	Direct measurement under the EU ETS	319
	10.4	Uncertainty influencing parameters in mass	
		emission measurement	326
	10.5	Measurement vs. calculation	330
	10.6	Conclusion: what method should be preferred?	334
	Appe	ndix – Relevant international and European	
	stand	_	335
	Biblio	ography	336

Contents

Cambridge University Press & Assessment 978-1-009-24321-6 — Accounting for Carbon Edited by Valentin Bellassen , Nicolas Stephan Frontmatter

More Information

	Part III	MRV at offset project scale	339	
11		etter for projects: the Clean Development		
	Mechai	nism	341	
	IGOR S	SHISHLOV		
	11.1 C	Context	341	
	11.2 N	Monitoring	351	
	11.3 R	Leporting	361	
	11.4 V	Verification Verification	364	
	11.5 V	What practitioners say about it	374	
	11.6 N	ARV ID table	376	
	Appendix - Transaction costs for CDM projects			
	Bibliogr	aphy	387	
12	Case st	udy 1: monitoring requirements for projects		
	reducin			
	across s	standards	390	
	CLAUD	INE FOUCHEROT		
	12.1	Context	390	
	12.2 N	Monitoring	392	
	12.3 R	Leporting	405	
	12.4 V	Verification Verification	406	
	12.5 C	Conclusion	408	
	12.6 N	ARV ID table	408	
	Bibliogr	aphy	421	

and improved forest management projects across standards 42				
MARI	IANA DEHEZA			
13.1	Context	423		
13.2	Monitoring in the CDM for reforestation projects			
	and VCS IFM projects	424		
13.3	Reporting	447		
13.4	Verification: what are auditors looking for?	447		
13.5	Conclusion	451		
13.6	MRV ID table	451		
Appendix – Determination of monitoring uncertainty 4				
Bibliography				

13 Case study 2: monitoring requirements for reforestation

ix

X	Contents

14	, , ,				
	emis	sions from fuels in the CDM	467		
	ALEXANDRA BARKER AND RODERICK ROBINSON				
	14.1	Fugitive emissions scale and scope	467		
	14.2	General principles of fugitive emission methodologies	469		
	14.3	CDM methodology AM0023	482		
	14.4	Cost of monitoring	486		
	14.5	Discussion	489		
	Appe	ndix	491		
	Biblio	ography	505		
15	Synthesis				
	VALENTIN BELLASSEN, NICOLAS STEPHAN,				
	MARION AFRIAT, EMILIE ALBEROLA, ALEXANDRA				
	BARKER, JEAN-PIERRE CHANG, CASPAR				
	CHIQUET, IAN COCHRAN, MARIANA DEHEZA,				
	CHR	IS DIMOPOULOS, CLAUDINE FOUCHEROT,			
	GUII	LLAUME JACQUIER, ROMAIN MOREL,			
	ROD	ERICK ROBINSON AND IGOR SHISHLOV			
	15.1	MRV requirements across schemes	510		
	15.2	Incentives to reduce monitoring uncertainty			
		tend to be partial and indirect	515		
	15.3	MRV costs: large economies of scale	520		
	15.4	"Materiality" is commonly practiced but it does			
		not outweigh economies of scale	528		
	15.5	Comparability often trumps information relevance	533		
	15.6	Staggering MRV vs. carbon pricing implementation	534		
	15.7	Conclusion	534		
	Biblio	ography	536		
	Inde:	x	538		

Figures and map

1.1	Uncertainty: accuracy and precision	page 7
2.1	Main and latest steps under the UNFCCC regarding	
	MRV and reduction target	24
4.1	VCS JNR simplified crediting scenarios	105
5.1	The cap-and-trade principle	141
5.2	Authorized monitoring methodologies	151
5.3	Number of category A, B and C installations in 2012	
	(all countries)	158
5.4	Classification of source streams	159
5.5	Tier system for calculation-based approaches	
	(combustion emissions)	159
5.6	Illustration of the principle of unreasonable costs	165
5. 7	Risk assessment procedure	166
5.8	The different scenarios leading to update of the	
	monitoring plan	167
5.9	The compliance cycle	169
5.10	Improvement based on verifier's recommendations	173
7.1	Electricity imports and exports from specified and	
	unspecified sources among the e-tag market path	228
7.2	Direct delivered, specified, unspecified, imported and	
	exported electricity under California's cap-and-trade	230
8.1	Energy intensity targets in recent 5-Year Plans. Base	
	years are 2000, 2005 and 2010 respectively	264
8.2	Energy intensity 2001–2011 in tons Standard Coal	
	Equivalent (SCE)	265
8.3	Organizational setup of the Shenzhen ETS	269
8.4	Allowance allocation versus carbon intensity	274
9.1	Ten most common Scope 3 categories	
	(with emissions data) reported to CDP	292
10.1	Extractive CEMS typical configuration	315
10.2	Simple non-dispersive infra-red detector	317

хi

xii List of figures and map 10.3 Overview of EN 14181 32.5 10.4 Stack gas flow profiles 328 11.1 The CDM scheme 342 11.2 The CDM governance structure 344 11.3 The CDM legislation hierarchy 346 11.4 The CDM project cycle 347 11.5 Geographical and sectoral distribution of CER issuance as of July 2013 350 11.6 Procedure for approval of new methodologies 353 11.7 DOE accreditation procedure 371 12.1 Agricultural emissions and mitigation potential worldwide 391 12.2 Comparison between non-variable and variable EF to calculate N₂O emissions reductions in the MSU-EPRI methodology 403 13.1 Field monitoring procedure 430 14.1 Progression of methods from Tier 1 to Tier 3 for the detection and quantification of fugitive emissions in the oil and gas industry 471 14.2 Five steps within a Leak Detection and Repair (LDAR) program 473 14.3 Leak measurement scenarios for IPCC Tier 3 476 bottom-up approach 14.4 Measurement of methane plumes using Differential Absorption Lidar (DIAL) 477 14.5 Two approaches to calculate baseline and project emissions in CDM methodology AM0023 484 15.1 Economies of scale in MRV 527

Map 8.1 The seven Chinese emissions trading pilot schemes

2.67

Tables

1.1	MRV ID table	page 12
2.1	Example of a CRF table: 2013 summary table 2	
	for the EU 15	47
2.2	Subcategories for combustion activities in the	
	Energy sector	52
2.3	MRV costs	60
2.4	MRV ID table	63
3.1	Selected tools and methodological frameworks	77
3.2	Principal data sources by inventory "level" categories	82
3.3	Cost of subnational GHG inventories	85
3.4	Example of disaggregated emissions sectors for local	
	governance and decision-making	88
3.5	MRV ID table	91
4.1	Monitoring requirements and accounting approaches	107
4.2	Activities to be accounted for by jurisdictional REDD+	
	programs	109
4.3	VCS JNR monitoring requirements for activity data and	
	emission factors	114
4.4	Deduction factor for uncertain estimates	116
4.5	Comparison between VCS JNR and UNFCCC	
	requirements for MRVing REDD+	121
4.6	Literature review on monitoring costs for REDD+	124
4. 7	MRV ID table	128
5.1	Activities covered by the EU ETS (summary of Annex I	
	of the Directive)	148
5.2	Methodologies to be used for the different ETS activities	
	(summary of Annex IV of the MRR)	152
5.3	Tier requirements for calculation-based approach	160
5.4	Tier requirements for measurement-based approach	160
5.5	Tiers for activity data of major source streams for	
	combustion of fuels	162

xiii

xiv List of tables

5.6	Values allowed for calculation factors according to	
	required tiers	163
5.7	Minimum frequency of analyses	164
5.8	Literature review on MRV costs in the EU ETS	174
5.9	MRV ID table	177
5.10	Relevant period of time taken into account for activity	
	data for the calculation of free allocation for 2013–2020	183
6.1	Summary of methods for monitoring GHG emissions	
	of waste sector in Australia	198
6.2	Default values of composition of solid waste	198
6.3	Default values of waste mix type of each waste stream	199
6.4	Aggregated uncertainty level by waste activities	203
6.5	MRV ID table	214
7.1	Registration calendar for power entities for 2014	231
7.2	The emission factors used for the different imported	
	electricity sources	236
7.3	The calculation of the emission factor for specified	
	facilities depending on their mandatory reporting	
	regulation	240
7.4	Key dates for verification	246
7.5	The impact of meter monitoring error in the	
	verification procedure	247
7.6	MRV costs of the MRR	249
7.7	The leakage according to the implementation or not of	
	an electricity tariff and a ban on resource shuffling	253
7.8	MRV ID table	255
8.1	MRV ID table	278
9.1	MRV ID table	296
9.2	Third-party use of GHG quantification data	309
10.1	N ₂ O emitting installations	320
10.2	Maximum permissible uncertainty for	
	measurement-based methods	322
10.3	Direct measurement vs. calculation	331
11.1	Periodic monitoring costs in CDM projects	357
11.2	Comparison of monitoring approaches in the CDM	
	and the EU ETS	361
11.3	Periodic verification costs in CDM projects	370
11.4	MRV ID table	376

List of tables		xv

11.5	Transaction costs for CDM projects	385
12.1	Approved methodologies for reduced N ₂ O emissions	
	from fertilizer use across standards	393
12.2	Amount of N from crop residues	396
	Comparison between methodologies	399
	Conservativeness factors and uncertainty deduction	
	for N ₂ O emissions reductions based upon	
	uncertainty at 95% confidence level	403
12.5	MRV ID table	409
13.1	Active carbon accounting methodologies for	
	reforestation (AR) and improved forest management	
	(IFM) methodologies in the CDM and the VCS as of	
	January 2014	425
13.2	Compulsory and optional accounting in	
	reforestation and improved forest management projects	427
13.3	Description of three CDM reforestation projects and	
	two VCS improved forest management projects	432
13.4	Trade-off between monitoring uncertainty and carbon	
	revenues for CDM reforestation projects	435
13.5	Monitoring details of three CDM reforestation projects	438
	Monitoring details of two VCS improved forest	
	management projects	442
13.7	Monitoring cost of three CDM reforestation projects	445
	Monitoring cost of three CDM and VCS	
	reforestation projects	446
13.9	Specific validation requirements for CDM	
	reforestation projects	448
13.10	MRV ID table	452
14.1	Advantages and disadvantages of direct vs. indirect	
	methods used within the Tier 3 bottom-up approach	491
14.2	MRV ID table	492
14.3	Effects of CDM projects on fugitive emissions	
	from fuels	499
14.4	Standards which address fugitive emissions	501
	Advantages and disadvantages of equipment used in	
	monitoring fugitive emissions	502
15.1	Verification requirements across carbon pricing	
	mechanisms and management schemes	512

xvi List of tables

15.2	Type of uncertainty requirements across carbon	
	pricing mechanisms and management schemes	516
15.3	Incentives to reduce monitoring uncertainty across	
	carbon pricing mechanisms and management schemes	521
15.4	MRV costs across carbon pricing mechanisms and	
	management schemes	525
15.5	"Materiality" across carbon pricing mechanisms and	
	management schemes	529

Boxes

3.1	The Covenant of Mayors	page 74
4.1	Uncertainty deduction	117
5.1	MRV for free allocation	182
8.1	Forced shutdowns under the 11th 5-Year Plan	265
8.2	Intensity-based allowances for a laptop manufacturer	275
9.1	Carbon Disclosure Standards Board's Climate Change	
	Reporting Framework	294

xvii

Contributors

Valentin Bellassen has worked as a researcher for the Environmental Defense Fund and as an international negotiator on forests at the UNFCCC, in the delegation of Papua New Guinea. For four years, he worked at CDC Climat where he managed the research unit on carbon offsets, agriculture and forestry. He is currently a researcher at INRA where he focuses on the economics of agro-ecology. He is also an accredited UNFCCC reviewer for national greenhouse gas inventories. Valentin graduated from École Normale Supérieure (Ulm) and holds a PhD in Environmental Sciences.

Nicolas Stephan worked for five years in the research department of CDC Climat on various topics related to carbon and energy markets. He was editor in chief of *Tendances Carbone*, a monthly publication which focuses on CO₂ prices. He is currently working in the investment department of CDC Climat, in charge of voluntary carbon offsetting as well as participations in innovative carbon investment vehicles. He holds a Master's in Economics and Business Management from Pantheon-Sorbonne University and a Master's in International Business from Paris-Dauphine University.

Marion Afriat works at CDC Climat and she focuses her research on the development of carbon markets in the world and on recent developments made in national carbon and energy efficiency policies among twenty countries. Marion has a Master's degree in International Relations from Paris II Assas University and Paris IV Sorbonne University.

Emilie Alberola is a research unit manager – European climate policy at CDC Climat. Her research work deals mostly with an analysis of the development of the European Union Emissions Trading Scheme and its carbon prices. She teaches carbon market economics in the 'Energy, Finance and Carbon' Master's program at Paris-Dauphine University

xviii

Notes on contributors

xix

and the 'Energy and Finance' Certificate at the HEC Paris business school. Emilie has a PhD in Economics from Pantheon-Sorbonne University and a Master's degree in Sustainable Development Management from HEC.

Alexandra Barker is a research scientist at NPL and holds an MSc in Environmental Protection and Management from the University of Edinburgh and a BSc in Geography from the University of Southampton. She has extensive experience in remote environmental sensing techniques for carbon measurement and is also involved in research projects investigating metrology improvements in carbon offsetting programs. Alexandra is also working in close collaboration with NPL's Centre for Carbon Measurement investigating forest carbon accounting.

Jean-Pierre Chang focuses on the coordination of national French emission inventories, greenhouse gases (for UNFCCC and Kyoto) and air pollutants (for UNECE). He was one of the architects of the European project "CORINAIR" which set the basis of the national air emission inventory systems for the Member States. He has a Postgraduate Diploma (DEA) in Chemistry–Physics from Paris VI – Pierre et Marie Curie University.

Caspar Chiquet is Head of Implementation for the Advisory Unit and manages the MRV practice of South Pole Carbon. He is responsible for monitoring and certifying emission reductions for 100+ installations throughout Greater China and providing consulting services in the field of monitoring, reporting and verification. He is an expert on IT questions and holds an MA from the University of Zürich in Chinese Studies and International Law and is business-fluent in Chinese.

Ian Cochran coordinates CDC Climat's research on the integration of climate change and the low-carbon energy transition into investment and finance decision-making. Focusing on the financial flows and instruments contributing to reducing greenhouse gas emissions, this work analyzes the methods and metrics to redirect capital towards the development of a low-carbon society. Ian holds a PhD degree in Economics from Université Paris-Dauphine. He also holds a Master of Public Affairs (MPA) from Sciences-Po Paris and a Bachelor's degree in Policy Studies from the Maxwell School-Syracuse University.

Notes on contributors

 $\mathbf{x}\mathbf{x}$

Mariana Deheza is a research fellow at CDC Climat. Mariana's fields of expertise include project mechanisms, in particular those linked to voluntary offsets and forestry projects. Before working for CDC Climat, Mariana worked for two years at the Bolivian Ministry of Development Planning on problems linked to the environment and the forestry industry. Mariana has a degree in Industrial Engineering from the Catholic University of La Paz in Bolivia, and an MSc in Environmental Economics from AgroParisTech-Ecole Polytechnique in Paris.

Chris Dimopoulos is a Higher Research Scientist at NPL and Team Leader in the Stack Emissions Environmental Measurement team. In addition to his role at NPL, Chris is a member of the CEN Committee for Air Quality TC 264. Chris holds an MSc in Environmental Engineering and Project Management from the University of Leeds and has over seven years of experience in all aspects of stack emission measurements including research and development of monitoring techniques. Chris is also involved in research investigating metrology improvements in GHG measurement.

Claudine Foucherot is a research fellow at CDC Climat and focuses her research on economic and political instruments to mitigate climate change in the agricultural sector. She is also in charge of the Climate and Agriculture Club, whose aim is to promote and share knowledge on technical and economic tools which can be used for climate change mitigation and adaptation in the agricultural sector. Trained as an agronomical engineer at AgroParisTech, Claudine has a Master's degree in the economics of sustainable development, energy and environment.

Guillaume Jacquier is a technical project manager at CITEPA. He is in charge of projects about the European Union Emissions Trading Scheme and gives training sessions on this subject. He also undertakes studies on air pollution in general, and emission inventories for the Ministry of Environment, subnational authorities or companies. Guillaume has a Master's degree in Energy, Combustion and Environment from the University of Orleans.

Romain Morel is a project manager at CDC Climat Research. He is in charge of analyzing policies and tools dedicated to the mobilization of public and private climate finance, including the monitoring of its

Notes on contributors

xxi

impact and its efficiency. His research also focuses on international climate negotiations. He holds an MSc in Engineering from ISAE-SUPAERO and an MSc in Energy Economics from the IFP School.

Roderick Robinson is Principal Research Scientist with over 20 years' experience at NPL. He is scientific lead for emissions monitoring at NPL including fugitive emissions measurement using DIAL (Differential Absorption Lidar). In addition to his role at NPL, Rod is Vice Chairman of the CEN Committee for Air Quality TC 264.

Igor Shishlov works at CDC Climat and his research focuses on carbon offset projects as well as on monitoring, verification and reporting (MRV) of greenhouse gas emissions. Igor has also been a PhD student at AgroParisTech since September 2012. His thesis focuses on the economics of monitoring ecosystem services on the example of carbon offset projects. Igor holds an MSc in Sustainable Development from HEC Paris and a Diploma in International Business from St. Petersburg State University.

Acknowledgements

First and foremost, we would like to thank the sponsors of the MRV project, without whom this book would never have been written:

- Agence Française de Développement;
- EIT Climate-KIC;
- Ministère français de l'Agriculture, de l'Agroalimentaire et de la Forêt:
- Ministère français de l'Ecologie, du Développement Durable et de l'Energie;
- Union des Industries de la Fertilisation.

We are also grateful to Marco Loprieno (European Commission) and Massamba Thioye (UNFCCC) who accepted the invitation to discuss our findings at our MRV conference in June 2014. We also thank Xueman Wang and Pierre Guigon (Partnership for Market Readiness, The World Bank) for the useful connection provided with new carbon pricing mechanisms being developed in emerging economies.

Many more people contributed to this book through interviews, comments or reviews. Their contribution is acknowledged in the relevant chapters.

xxii